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ABSTRACT

The study of semilinear partial differential equations has proven to be of great

importance in the fields of Physics and Geometry. Solutions to such equations cor-

respond in particular to standing waves in Schrödinger equations and metrics with

constant curvature on Riemannian manifolds. In this manuscript, we obtain existence

results of blowing-up solutions as well as compactness results to Yamabe-type equa-

tions on manifolds. In particular, in a joint work with Jérôme Vétois, we construct

blowing-up solutions to a Yamabe-type equation on the standard sphere with dimen-

sion n = 4. Then, we construct blowing-up solutions on the standard half-sphere in

dimensions n ≥ 3. Finally, joint with Sérgio Almaraz and Olivaine Queiroz, we prove

a compactness theorem to the boundary Yamabe problem in the scalar flat case in

dimension n = 3.
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ABRÉGÉ

L’étude des équations aux dérivées partielles semi-linéaires s’est révélée d’une

grande importance dans les domaines de la physique et de la géométrie. Des so-

lutions de telles équations correspondent en particulier à des ondes stationnaires

dans les équations de Schrödinger et à des métriques de courbure constante sur des

variétés riemanniennes. Dans ce manuscrit, nous obtenons des résultats d’existence

de solutions explosives ainsi que des résultats de compacité pour des équations de

type Yamabe sur les variétés. En particulier, dans un travail en collaboration avec

Jérôme Vétois, nous construisons des solutions explosives pour une équation de type

Yamabe sur la sphère standard en dimension n = 4. Ensuite, nous construisons des

solutions explosives sur la demi-sphère standard en dimension n ≥ 3. Finalement, en

collaboration avec Sérgio Almaraz et Olivaine Queiroz, nous prouvons un théorème

de compacité pour le problème de Yamabe à bord dans le cas à courbure scalaire

nulle en dimension n = 3.
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PREFACE

The present manuscript contains original research work in the field of geometric

analysis and partial differential equations. In particular, it studies the question of

compactness and noncompactness of Yamabe-type problems on manifolds with and

without boundary. The manuscript consists of an introduction and a collection of

three research papers.

Chapter 1 is an introduction where we introduce the main problems, briefly

review the literature and state the main results of this thesis.

Chapter 2 deals with the construction of blowing-up solutions to a cubic non-

linear Schrödinger equation on the 4-sphere. This chapter is based on the following

paper (co-authors contributed equally to the paper):

• Jérôme Vétois and Shaodong Wang, Infinitely many solutions for cubic nonlinear

Schrödinger equations in dimension four, Adv. Nonlinear Anal. (2017).

Chapter 3 deals with the construction of blowing-up solutions to a Yamabe-type

problem on the half-sphere for n ≥ 3. This chapter is based on the following paper:

• Shaodong Wang, Infinitely many blowing-up solutions for Yamabe-type problems on

manifolds with boundary, Commun. Pure Appl. Anal. 17 (2017), no. 1, 209-230.

In Chapter 4, we present a compactness result to the boundary Yamabe problem

in the scalar flat case. This chapter is based on the following paper (co-authors

contributed equally to the paper):
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• Sérgio Almaraz, Olivaine S. de Queiroz and Shaodong Wang, A compactness theorem

for scalar-flat metrics on 3-manifolds with boundary, J. Funct. Anal. (2018).

Please note that except Chapter 1, each chapter is self-contained and does not

refer to other chapters.
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CHAPTER 1
INTRODUCTION

The present manuscript is concerned with the compactness, i.e., the existence of

a priori bounds, and noncompactness of the set of positive solutions to Yamabe-type

problems on manifolds. In Section 1.1 of our introduction, we will briefly review the

literature on Yamabe-type problems on manifolds. Sections 1.2 and 1.3 deal with

the constructions of blowing-up solutions on the standard sphere and half-sphere,

respectively. In Section 1.4, we present a compactness result to a boundary Yamabe

problem in the scalar flat case.

1.1 Yamabe-type problems

Let (M, g) be a smooth, compact, n-dimensional Riemannian manifold without

boundary, n ≥ 3. Denote ∆g := − divg∇ the Laplace-Beltrami operator. We are

interested in the following semilinear elliptic partial differential equation

∆gu+ fu = u2∗−1, u > 0, in M, (1.1)

where 2∗ := 2n/ (n− 2) is the critical exponent of the Sobolev embedding.

Equation (1.1) plays an important role both in Physics and Differential Ge-

ometry. Solutions to equation (1.1) correspond to the standing waves of nonlinear

Schrödinger equations. On the other hand, when f ≡ n−2
4(n−1)

Rg, where Rg is the

scalar curvature, equation (1.1) is the Yamabe problem on (M, g). The existence
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of such solutions was solved in a series of works by Yamabe [63], Trudinger [53],

Aubin [7] and Schoen [47]. We refer to the book by Hebey [34] for a more extensive

coverage on this type of equations.

Schoen [48] in 1988 raised the question of compactness of the set of solutions

to the Yamabe problem on manifolds without boundary and obtained the first com-

pactness results, solving in particular the case of locally conformally flat manifolds.

Later, Druet [20,21], Li and Zhang [38–40], Li and Zhu [42], Marques [43] and Schoen

and Zhang [51] proved compactness up to dimensions 3 ≤ n ≤ 11. Brendle [11] and

Brendle and Marques [13] then constructed counterexamples for n ≥ 25. Finally,

Khuri, Marques and Schoen [36] proved compactness for all dimensions 3 ≤ n ≤ 24.

Perturbations of the Yamabe problem have been studied extensively over the

years. Druet [21] obtained the compactness of the set of solutions to (1.1) (see also

Li and Zhu [42] in case n = 3). On the other hand, when f > n−2
4(n−1)

Rg, we refer to

Chen, Wei and Yan [16], Druet and Hebey [22], Esposito, Pistoia and Vétois [27],

Hebey and Wei [35] and Thizy and Vétois [52] for blowing-up constructions.

In 1992, Escobar proposed the boundary version of the Yamabe problem. Given

a smooth, compact Riemannian manifold (M, g) of dimension n ≥ 3 with boundary

∂M , Escobar in [25,26] asked the following two questions:

(1) Is there a metric g̃ conformally equivalent to g such that (M, g̃) has constant

scalar curvature and zero mean curvature?

(2) Is there a metric g̃ conformally equivalent to g such that (M, g̃) has zero scalar

curvature and constant mean curvature?
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Denote hg the mean curvature of (M, g) with respect to the inner normal. Then

the boundary Yamabe problem is equivalent to finding a conformal metric g̃ such

that either Rg̃ = c and hg̃ = 0 or Rg̃ = 0 and hg̃ = c for some constant c. See

Almaraz [1], Brendle and Chen [12], Chen [15], Escobar [25,26] and Marques [44,45]

for existence results.

Unlike the case of manifolds without boundary, the question of compactness

of the boundary Yamabe problem remains open in general despite several works

on this topic. On this problem, we refer for instance to Almaraz [2], Disconzi and

Khuri [19], Felli and Ahmedou [28, 29] and Han and Li [33] for compactness results,

and Almaraz [3] and Disconzi and Khuri [19] for blowing-up constructions. We also

refer to Ghimenti, Micheletti and Pistoia [30–32] who recently obtained existence

results of blowing-up solutions to perturbations of the Yamabe problem on manifolds

with boundary.

1.2 Blowing-up constructions on the sphere

In this section, we will present our results on the construction of blowing-up

solutions to a Yamabe-type equation on the standard sphere. This section is based

on [54], joint work with Jérôme Vétois, and we refer to Chapter 2 for more details.

Assume in this section that (M, g) is the standard sphere (Sn, g0) of dimension

n. We study the following equation

∆gu+ fu = u2∗−1, u > 0, in M, (1.2)

where 2∗ := 2n/ (n− 2).
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When f ≡ n−2
4(n−1)

Rg ≡ n(n−2)
4

, (1.2) is the Yamabe problem on (Sn, g0). In

this case, all the solutions are classified by Obata [46] and Caffarelli, Gidas and

Spruck [14].

When f < n−2
4(n−1)

Rg, Druet [21] obtained compactness results for general mani-

folds without boundary. If we assume moreover that 0 < f < n−2
4(n−1)

Rg is a constant,

then Bidaut-Véron and Véron [10] showed that f
n−2
4 is the only positive solution to

(1.2). On the other hand, when f > n−2
4(n−1)

Rg, Druet [20] showed that compactness

results hold for families of solutions (uε)ε>0 to (1.2) provided that the solutions have

bounded energies, i.e., ‖uε‖ ≤ C for some constant C independent of ε. However,

if one removes the energy bound, blowing-up solutions can be constructed. Such

solutions were constructed by Chen, Wei and Yan [16] on the standard sphere for

n ≥ 5. We extend their result to the case of dimension 4 by proving the following:

Theorem 1.2.1. Assume that (M, g) is the standard sphere, n = 4. If f > 2 is a

constant, then there exists a family of positive solutions (uε)ε>0 to (1.2) such that

‖∇uε‖L2(S4) →∞ as ε→ 0.

In case n = 3, Li and Zhu [42] obtained a priori bounds on the energy of positive

solutions to (1.1). Thus the dimension n = 4 is optimal in Theorem 1.2.1.

It is interesting to mention that our blowing-up constructions (Theorem 1.2.1)

yield surprising applications to the construction of biharmonic maps on the 4-sphere.

Indeed just recently, using our result, Baird and Ou [8] were able to show the existence

of proper biharmonic maps, i.e., maps that are critical to the energy functional of a

tension field, on S4. In their paper, they showed that this problem can be reduced to
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proving the existence of positive solutions to Yamabe-type equations, which is given

by our constructions in the case of the sphere.

In fact, a more general result can be proved in the Euclidean space. Before

stating this result, let us introduce some definitions. We denote D1,2(R4) the com-

pletion of smooth functions with compact support in R4 with respect to the norm

‖u‖D1,2(R4) = ‖∇u‖L2(R4). We say that the operator ∆ + f is coercive in D1,2 (R4) if∫
R4

(
|∇u|2 + fu2

)
dx ≥ C ‖u‖2

D1,2(R4) ∀u ∈ D1,2
(
R4
)

for some constant C > 0. The standard bubbles are functions of the form

Ux,µ(y) = (n(n− 2))
n−2
4

(
µ

1 + µ2|y − x|2

)n−2
2

(1.3)

for µ > 0 and x, y ∈ Rn. It is well known that they are all the solutions to the

problem

∆u = u
n+2
n−2 , u > 0, in Rn, (1.4)

where ∆ is the Euclidean Laplacian with negative sign. Our general result in the

Euclidean space is the following:

Theorem 1.2.2 (Jerome-W, 17). Assume that (M, g) = (R4, δ0) and f ∈ C0,α (R4)∩

L2 (R4) is radially symmetric about the point 0 where δ0 is the standard Euclidean

metric and 0 < α < 1. Assume moreover that the operator ∆ + f is coercive in

D1,2 (R4) and the function r 7→ r2f (r) has a strict local maximum point r0 > 0

such that f (r0) > 0. Then there exists a family of positive solutions (uε)ε>0 in

C2,α (R4) ∩D1,2 (R4) of (1.1) such that ‖∇uε‖L2(R4) →∞ as ε→ 0.
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The proof of Theorem 1.2.2 relies on a Lyapunov-Schmidt-type method and

a symmetric construction of infinitely many bubbles inspired by Chen, Wei and

Yan [16]. We construct blowing-up solutions as the sum of standard bubbles located

around a circle plus an error term. The parameters used in our construction are the

location and number of bubbles. In our work, unlike the case when n ≥ 5, we find

that the number of bubbles behaves as a logarithm instead of a power of the bubble’s

height. Refined estimates are obtained in order to reduce our problem to finding a

critical point of the energy functional, which then gives the existence results.

Once we prove Theorem 1.2.2, Theorem 1.2.1 follows as a corollary. The proof

of Theorem 1.2.1 and Theorem 1.2.2 will be given in Chapter 2.

1.3 Blowing-up constructions on the half-sphere

To study compactness properties of the Yamabe-type problem on manifolds

with boundary, it is natural to first start looking at the standard half-sphere. In

this section, we discuss a blowing-up construction to a perturbation problem on the

half-sphere. This section is based on [55] and we refer to Chapter 3 for more details.

We turn our focus to the following problem
∆gu+ fu = 0 in M

∂u
∂ν

+ hu = u
n
n−2 on ∂M,

(1.5)

where (M, g) is a smooth, compact, n-dimensional Riemannian manifold with bound-

ary, n ≥ 3, and ν is the outward pointing normal vector.

When f ≡ n−2
4(n−1)

Rg and h ≡ n−2
2
hg, where Rg and hg are the scalar and mean

curvature of M and ∂M , respectively, problem (1.5) is the Yamabe problem with
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prescribed scalar curvature 0 and mean curvature 2
n−2

. Almaraz in [2] proved a

compactness result to this problem when n ≥ 7 under the condition that the trace-

free second fundamental form is nonzero everywhere. Under the same conditions,

Ghimenti, Micheletti and Pistoia [30,31] considered perturbation problems of (1.5).

They obtained existence results of positive blowing-up solutions to (1.5) with per-

turbations on the nonlinearity in [30] and on the potential in [31].

In general dimensions n ≥ 3, our main result to (1.5) on the standard half-sphere

is the following:

Theorem 1.3.1. Let (M, g) be the standard half-sphere of dimensions n ≥ 3. If

f ≡ n−2
4(n−1)

Rg and h is a positive constant, then there exists a family of positive

solutions (uε)ε>0 to (1.5) with ‖∇uε‖L2(M) →∞ as ε→ 0.

We obtain a more general result in the Euclidean half-space. We introduce

some notations first. We denote D1,2(Rn
+) the completion of smooth functions with

compact support in Rn
+ with respect to the norm ‖u‖D1,2(Rn+) = ‖∇u‖L2(Rn+). We say

that ∂
∂µ

+ h is coercive in D1,2(Rn
+) if∫

Rn+
|∇u|2 +

∫
∂Rn+

hu2 ≥ C‖u‖2
D1,2(Rn+)

for some C > 0. The standard bubbles in this case are functions of the form

Ux,µ(y) = B(
1

µ(yn + 1
µ
)2 + µ|ȳ − x̄|2

)
n−2
2 (1.6)

9



for µ > 0 where B = (n − 2)
n−2
2 , x = (x̄, xn), y = (ȳ, yn) ∈ Rn

+. It is proved in Li

and Zhu [41] that (1.6) are all the positive solutions to the following problem
∆u = 0 in Rn

+

∂u
∂ν

= u
n
n−2 on ∂Rn

+.

(1.7)

Our result in the Euclidean half-space is the following:

Theorem 1.3.2. Let M = Rn
+ = Rn−1 × [0,+∞) be the Euclidean half-space of

dimension n ≥ 3. Assume that f ≡ 0, h ∈ C1(∂Rn
+) ∩ Ln−1(∂Rn

+) is a radial

function and the operator ∆ with boundary condition ∂
∂µ

+h is coercive in D1,2(Rn
+).

Assume moreover that rh(r) has a local strict maximum or minimum point when

n ≥ 4 and a strict local maximum point when n = 3 at some r0 > 0 with h(r0) > 0.

Then there exists infinitely many positive solutions in D1,2(Rn
+) to (1.5) whose energy

can be made arbitrarily large.

Recall that in the sphere case, dimension 4 is critical. While we have blowing-up

constructions for all n ≥ 4, such solutions do not exist in dimension 3 due to the

energy bound. Quite interestingly, we notice a shift of dimension for manifolds with

boundary. In case of the half-sphere, blowing-up constructions do exist for dimension

n = 3. Moreover, in this case, the number of bubbles behaves as a logarithm of the

bubble’s height, just like the case n = 4 for the sphere. We prove Theorem 1.3.2 by

using a Lyapunov-Schmidt-type argument. Suitable change of variables is used for

the optimal dimension n = 3. The proof of Theorem 1.3.1 and Theorem 1.3.2 will

be given in Chapter 3.
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1.4 A compactness result

So far we discussed some constructions of blowing-up solutions to Yamabe-type

equations. In this section, we will present a compactness result which we obtain in

the case of manifolds with boundary. This section is based on [5], joint work with

Sérgio Almaraz and Olivaine Queiroz, and we refer to Chapter 4 for more details.

Let (M, g) be a smooth, n-dimensional, compact Riemannian manifold with

boundary, n ≥ 3. Let g̃ = u
4

n−2 g be the conformal metric for some u > 0. The scalar

and mean curvatures of (M, g̃) are calculated as

Rg̃ = u−
n+2
n−2

(
Rgu+

4(n− 1)

n− 2
∆gu

)
(1.8)

and

hg̃ = u−
n
n−2 (

2

n− 2

∂u

∂ν
+ hgu), (1.9)

where ∆g is the Laplacian-Beltrami operator and ν is the outward pointing nor-

mal vector. Thus the boundary Yamabe problem is equivalent to finding a positive

solution to 
∆gu+ n−2

4(n−1)
Rgu = c1u

n+2
n−2 in M

∂u
∂ν

+ n−2
2
hgu = c2u

n
n−2 on ∂M

(1.10)

for some constants c1 and c2.

Han and Li [33] obtained compactness results of (1.10) with c1 > 0 and general

c2, under the assumption that (M, g) is locally conformally flat with umbilic bound-

ary. Later, Felli and Ahmedou [28] showed that compactness holds when c1 = 0 and

c2 > 0 for locally conformally flat manifolds with umbilic boundary. When c1 = 0,
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Almaraz [2] obtained compactness results under the generic condition that the trace-

free part of the second fundamental form does not vanish anywhere for n ≥ 7. Most

recently, Disconzi and Khuri [19] were able to obtain compactness results when c1 > 0

and c2 = 0 using a similar argument to Khuri, Marques and Schoen [36]. They showed

that compactness holds for 3 ≤ n ≤ 24 if (M, g) is not conformally equivalent to the

standard half-sphere with counterexamples in case n ≥ 25. However, their results

still rely on the assumption of umbilicity of the boundary ∂M .

For the rest of this section, we are interested in the scalar flat case, that is,

c1 = 0. We study the following equation
∆gu+ n−2

4(n−1)
Rgu = 0 in M

∂u
∂ν

+ n−2
2
hgu = Kup on ∂M,

(1.11)

where 1 < p ≤ n
n−2

and K is a constant which has the same sign as the Yamabe

invariant that we define in the paragraph below.

The Yamabe invariant of (1.11) is defined as

Q(M,∂M) := inf
{
Q(u); u ∈ C1(M̄), u 6= 0 on ∂M

}
,

where

Q(u) :=

∫
M
|∇gu|2 + n−2

4(n−1)
Rgu

2dvg + n−2
2

∫
∂M

hgu
2dσg(∫

∂M
|u|p+1dσg

) 2
p+1

,

where dvg and dσg denote the volume forms of M and ∂M , respectively.

When Q(M,∂M) < 0, (1.11) has a unique solution. If Q(M,∂M) = 0, (1.11)

becomes linear and solutions are unique up to a scalar multiplication. Therefore the
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only interesting case here for our problem of compactness is when Q(M,∂M) > 0.

Our main result in this case is the following:

Theorem 1.4.1. Let (M, g) be a Riemannian 3-manifold with boundary ∂M . Sup-

pose that Q(M,∂M) > 0 and M is not conformally equivalent to the unit ball. Then,

given a small γ0 > 0, there exists C(M, g, γ0) > 0 such that for any p ∈
[
1 + γ0,

n
n−2

]
and any solution u > 0 of (1.11) we have

C−1 ≤ u ≤ C and ‖u‖C2,α(M) ≤ C ,

for some 0 < α < 1.

The proof of Theorem 1.4.1 relies on a local sign restriction given by a Pohozaev-

type identity and a boundary version of the Positive Mass Theorem. Near a blow-up

point, we first approximate our solution by a standard bubble plus a correction term.

The correction term is defined as a solution to a non-homogeneous linear equation.

Using the estimates in the previous step, we prove a local sign condition using the

Pohozaev identity. This sign condition allows us to reduce the discussion to the case

of isolated simple blow-up points. Finally, using the Positive Mass Theorem obtained

in Almaraz, Barbosa and de Lima [4] and the local sign restriction, the compactness

result follows by a standard argument.

The Positive Mass Theorem plays an important role in the proof of compactness

of Yamabe-type problems. A key ingredient used in the above-mentioned results

dealing with the umbilic case is a doubling manifold trick introduced by Escobar [26].

Using this trick, Escobar was able to prove a Positive Mass Theorem for manifolds

with boundary provided the boundary is umbilic. The assumption of umbilicity of the

13



boundary allows to reduce the argument to the case of manifolds without boundary,

where the standard Positive Mass Theorem can be applied.

Unlike the previous works, we use a boundary version of the Positive Mass

Theorem proven by Almaraz, Barbosa and de Lima [4] for general manifolds with

boundary when 3 ≤ n ≤ 7 as well as for spin manifolds when n ≥ 3. Due to the lack

of explicit expression of the Green’s function in the case of manifolds with boundary,

we have to find relations between the local sign restriction and the Positive Mass

Theorem using a flux integral method inspired by Brendle and Chen [12]. The proof

of Theorem 1.4.1 is given in Chapter 4.
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CHAPTER 2
BLOWING-UP CONSTRUCTIONS ON THE SPHERE

In this chapter, we obtain an existence result of blowing-up solutions to a cubic

nonlinear Schrödinger equation on the standard sphere. This chapter is based on the

following paper:

• Jérôme Vétois and Shaodong Wang, Infinitely many solutions for cubic nonlinear

Schrödinger equations in dimension four, Adv. Nonlinear Anal. (2017).

2.1 Introduction and main results

In this note, we consider the cubic nonlinear Schrödinger equation

∆gu+ fu = u3 in M (2.1)

where (M, g) is a Riemannian manifold of dimension 4, ∆g := − divg∇ is the Laplace-

Beltrami operator, and f ∈ C0,α (M), α ∈ (0, 1).

In case (M, g) = (S4, g0) where g0 is the standard metric on the sphere S4, we

obtain the following result:

Theorem 2.1.1. Assume that (M, g) = (S4, g0) and f > 2 is constant. Then there

exists a family of positive solutions (uε)ε>0 to (2.1) such that ‖∇uε‖L2(S4) → ∞ as

ε→ 0.

Theorem 2.1.1 extends a result obtained by Chen, Wei, and Yan [16] in dimen-

sions n ≥ 5 for positive solutions of the equation
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∆gu+ fu = u2∗−1 in M (2.2)

where 2∗ := 2n/ (n− 2). The dimension four is optimal for this result since Li and

Zhu [42] obtained the existence of a priori bounds on the energy of positive solutions

to (2.2) in dimension three.

It is also interesting to mention that in case n 6∈ {3, 6} and f > n(n−2)
4

on Sn

(or more generally f > n−2
4(n−1)

Scalg on a general closed manifold where Scalg is the

scalar curvature), Druet [20] obtained a compactness result for families of positive

soutions (uε)ε>0 of (2.2) with bounded energies, i.e. such that ‖∇uε‖L2(M) < C for

some constant C independent of ε. The above Theorem 2.1.1 together with the result

of Chen, Wei, and Yan [16] in dimensions n ≥ 5 show that the energy assumption in

Druet’s result is necessary at least in the case of the standard sphere.

In case f ≡ n(n−2)
4

and (M, g) = (Sn, g0), the positive solutions of (2.2) have

been classified by Obata [46] (see also Caffarelli, Gidas, and Spruck [14]). In this

case, the solutions are not bounded in L∞ (Sn) but they all have the same energy. We

refer to Brendle [11], Brendle and Marques [13], Khuri, Marques, and Schoen [36]

and the references therein for results on the set of solutions of (2.2) in case f ≡
n−2

4(n−1)
Scalg and (M, g) 6= (Sn, g0). On the other hand, in case f < n−2

4(n−1)
Scalg

on a general closed manifold, Druet [21] obtained pointwise a priori bounds on the

set of positive solutions of (2.2). Remark that if moreover 0 < f < n−2
4(n−1)

Scalg is

constant, then Bidaut-Véron and Véron [10] obtained that u ≡ f (n−2)/4 is the unique

positive solution of (2.2). We refer to the books of Druet, Hebey, and Robert [23]

and Hebey [34] for more results on equations of type (2.1) on a closed manifold.
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As in the paper of Chen, Wei, and Yan [16], we obtain Theorem 2.1.1 by proving

a more general result in case (M, g) = (R4, δ0) where δ0 is the Euclidean metric on

R4. We let D1,2 (R4) be the completion of the set of smooth functions with compact

support in R4 with respect to the norm ‖u‖D1,2(R4) = ‖∇u‖L2(R4). For simplicity, we

will denote ∆ := ∆δ0 , 〈·, ·〉 := 〈·, ·〉δ0 , and |·| := |·|δ0 . We say that the operator ∆ + f

is coercive in D1,2 (R4) if∫
R4

(
|∇u|2 + fu2

)
dx ≥ C ‖u‖2

D1,2(R4) ∀u ∈ D1,2
(
R4
)

for some constant C > 0. We obtain the following result:

Theorem 2.1.2. Assume that (M, g) = (R4, δ0) and f ∈ C0,α (R4) ∩ L2 (R4) is

radially symmetric about the point 0. Assume moreover that the operator ∆ + f is

coercive in D1,2 (R4) and the function r 7→ r2f (r) has a strict local maximum point

r0 > 0 such that f (r0) > 0. Then there exists a family of positive solutions (uε)ε>0

in C2,α (R4) ∩D1,2 (R4) of (2.1) such that ‖∇uε‖L2(R4) →∞ as ε→ 0.

The proof of Theorem 2.1.2 relies on a Lyapunov–Schmidt-type method as in

the paper of Chen, Wei, and Yan [16]. This method for constructing solutions with

infinitely many peaks was invented and successfully used in previous works by Wang,

Wei and Yan [56, 57] and Wei and Yan [58–61]. A specificity in our case is that the

number of peaks in the construction behaves as a logarithm of the peak’s height

while it behaves as a power of the peak’s height in the higher dimensional case (see

the paper of Chen, Wei, and Yan [16]). Due to this logarithm behavior, we need to

introduce some suitable changes of variables in order to find the critical points of the

reduced energy in this case (see the proof of Theorem 2.1.2 at the end of Section 2.2).
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2.2 Proof of Theorems 2.1.1 and 2.1.2

This section is devoted to the proof of Theorems 2.1.1 and 2.1.2. For any integer

k ≥ 1, we let Hk be the set of all functions u ∈ D1,2 (R4) such that u is even in

x2, x3, x4 and

u (r cos (θ) , r sin (θ) , x3, x4)

= u (r cos (θ + 2π/k) , r sin (θ + 2π/k) , x3, x4)

for all r > 0 and θ, x3, x4 ∈ R. Assuming that the operator ∆ + f is coercive in

D1,2 (R4), we can equip Hk with the inner product

〈u, v〉Hk :=

∫
R4

(〈∇u,∇v〉+ fuv) dx ∀u, v ∈ Hk

and the norm

‖u‖Hk :=
√
〈u, u〉Hk ∀u ∈ Hk.

For any k ≥ 1 and r, µ > 0, we define

Wk,r,µ :=
k∑
i=1

Ui,k,r,µ

where

Ui,k,r,µ (x) :=
2
√

2µ

1 + µ2 |x− xi,k,r|2
∀x ∈ R4

and

xi,k,r := (r cos (2 (i− 1) π/k) , r sin (2 (i− 1) π/k) , 0, 0) .
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Moreover, we define

Pk,r,µ :=

{
φ ∈ Hk :

k∑
i=1

〈φ, Zi,j,k,r,µ〉Hk = 0 ∀j ∈ {1, 2}

}

where

Zi,1,k,r,µ :=
1

µ

d

dr
[Ui,k,r,µ] and Zi,2,k,r,µ := µ

d

dµ
[Ui,k,r,µ] .

First, in Proposition 2.2.1 below, we solve the equation

Qk,r,µ

(
Wk,r,µ + φ− (∆ + f)−1 ((Wk,r,µ + φ)3

+

))
= 0 (2.3)

where φ ∈ Pk,r,µ is the unknown function, Qk,r,µ is the orthogonal projection of Hk

onto Pk,r,µ, and u+ := max (u, 0) for all u : R4 → R.

We will prove the following result in Section 2.3:

Proposition 2.2.1. Let f ∈ C0,α (R4) ∩ L2 (R4) be a radially symmetric function

about the point 0 and such that the operator ∆ + f is coercive in D1,2 (R4). Then

for any a, b, c, d > 0 such that a < b and c < d, there exist constants k0 > 0 and

C0 > 0 such that for any k ≥ k0, r ∈ [a, b], and µ ∈
[
eck

2
, edk

2]
, there exists a unique

solution φk,r,µ ∈ Pk,r,µ of (2.3) such that

‖φk,r,µ‖Hk ≤ C0k/µ. (2.4)

Moreover, the map (r, µ) 7→ φk,r,µ is continuously differentiable and if there exists a

critical point (rk, µk) ∈ [a, b]×
[
eck

2
, edk

2]
of the function

(r, µ) 7−→ Ik (r, µ) := I (Wk,r,µ + φk,r,µ)
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where

I (u) :=
1

2

∫
R4

(
|∇u|+ fu2

)
dx− 1

4

∫
R4

u4
+dx,

then the function Wk,rk,µk + φk,rk,µk is a positive solution in C2,α (R4) ∩ Hk of the

equation

∆u+ fu = u3 in R4. (2.5)

Then we will prove the following result in Section 2.4:

Proposition 2.2.2. Let f ∈ C0,α (R4) ∩ L2 (R4) be a radially symmetric function

about the point 0 and such that the operator ∆ + f is coercive in D1,2 (R4). Then

there exist constants c0, c1, c2 > 0 such that for any a, b, c, d > 0 such that a < b and

c < d,

I (Wk,r,µ + φk,r,µ) = c0k + c1f (r)
k lnµ

µ2
− c2k

3

r2µ2
+ o

(
k3

µ2

)
(2.6)

as k → ∞ uniformly in r ∈ [a, b] and µ ∈
[
eck

2
, edk

2]
where φk,r,µ is as in Proposi-

tion 2.2.1.

Now, we prove Theorem 2.1.2 by using Propositions 2.2.1 and 2.2.2.

Proof of Theorem 2.1.2. Since f (r0) > 0 and r0 is a strict local maximum point of

the function r 7→ r2f (r), we obtain that there exists δ0 > 0 such that

0 < r2f (r) < r2
0f (r0) ∀r ∈ [r0 − δ0, r0 + δ0] . (2.7)

For any k ≥ 1 and s > 0, we define µk (s) := esk
2
. By applying Proposition 2.2.2, we

obtain

Ik (r, µk (s)) = c0k + k3e−2sk2
(
c1f (r) s− c2

r2
+ o (1)

)
(2.8)
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as k →∞ uniformly in (r, s) in compact subsets of (0,∞)2. Remark that the function

s 7−→ e−2sk2
(
c1f (r) s− c2

r2

)
attains its maximal value at the point

sk (r) :=
c2

c1f (r) r2
+

1

2k2

for all k ≥ 1 and r ∈ [r0 − δ0, r0 + δ0]. We define

Jk (r, t) := Ik (r, µk (sk (r) + t)) .

By using (2.7), we obtain that there exists t0 > 0 such that

t0 < min
(sk (r0)

2
,
2

3
(sk (r0 + δ0)− sk (r0)) ,

2

3
(sk (r0 − δ0)− sk (r0))

)
(2.9)

for all k ≥ 1. Since t0 < sk (r0) /2, it follows from (2.8) that

Jk (r, t) = c0k + k3e−2(sk(r)+t)k2 (c1f (r) t+ o (1)) (2.10)

as k →∞ uniformly in (r, t) ∈ [r0 − δ0, r0 + δ0]× [−t0, t0]. Since sk (r) > sk (r0) and

f (r) > 0, it follows from (2.10) that

Jk (r, t0) < Jk (r0, t0/2) (2.11)

and

Jk (r,−t0) < Jk (r0, t0/2) (2.12)
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as k → ∞ uniformly in r ∈ [r0 − δ0, r0 + δ0]. Moreover, by using (2.9) and (2.10),

we obtain

Jk (r0 ± δ0, t) < Jk (r0, t0/2) (2.13)

as k → ∞ uniformly in t ∈ [−t0, t0]. It follows from (2.11)–(2.13) that the function

Jk has a local maximum point (rk, tk) ∈ [r0 − δ0, r0 + δ0] × [−t0, t0] for large k. We

then obtain ∇Ik (rk, µk (sk (rk) + tk)) = 0 and so by applying the second part of

Proposition 2.2.1, we obtain that the function Wk,rk,µk(sk(rk)+tk) + φk,rk,µk(sk(rk)+tk) is

a positive solution of the equation (2.5). Moreover, by using (2.4) together with the

definition of Wk,rk,µk(sk(rk)+tk), we easily obtain

∥∥∇ (Wk,rk,µk(sk(rk)+tk) + φk,rk,µk(sk(rk)+tk)

)∥∥
L2 →∞

as k →∞. This ends the proof of Theorem 2.1.2.

Finally, we prove Theorem 2.1.1 by using Theorem 2.1.2.

Proof of Theorem 2.1.1. By using a stereographic projection, we can see that the

equation (2.1) on (M, g) = (S4, g0) is equivalent to the problem
∆u+

4 (f − 2)(
1 + |y|2

)2u = u3 in R4

u ∈ D1,2
(
R4
)
.

(2.14)

It is easy to check that if f > 2 is a constant, then the potential function in (2.14)

satisfies the assumptions of Theorem 2.1.2. With this remark, Theorem 2.1.1 becomes

a direct corollary of Theorem 2.1.2.
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2.3 Proof of Proposition 2.2.1

We prove Proposition 2.2.1 in this section. Throughout this section, we assume

that f ∈ C0,α (R4)∩L2 (R4) is radially symmetric about the point 0 and the operator

∆ + f is coercive in D1,2 (R4).

We rewrite (2.3) as Lk,r,µ (φ) = Qk,r,µ (Nk,r,µ (φ) +Rk,r,µ) , where

Lk,r,µ (φ) := Qk,r,µ

(
φ− (∆ + f)−1 (3W 2

k,r,µφ
))
,

Nk,r,µ (φ) := (∆ + f)−1 ((Wk,r,µ + φ)3
+ −W

3
k,r,µ − 3W 2

k,r,µφ
)
,

Rk,r,µ := (∆ + f)−1 (W 3
k,r,µ

)
−Wk,r,µ.

First, we obtain the following result:

Lemma 2.3.1. For any a, b, c, d > 0 such that a < b and c < d, there exist constants

k1 > 0 and C1 > 0 such that for any k ≥ k1, r ∈ [a, b], and µ ∈
[
eck

2
, edk

2]
, Lk,r,µ is

an isomorphism from Pk,r,µ to itself and

‖Lk,r,µ (φ)‖Hk ≥ C2 ‖φ‖Hk ∀φ ∈ Pk,r,µ.

Proof. The proof of this result follows the same lines as in the paper of Chen, Wei,

and Yan [16].

We then estimate the error term Rk,r,µ. We obtain the following result:

Lemma 2.3.2. For any a, b, c, d > 0 such that a < b and c < d, there exist constants

k2 > 0 and C2 > 0 such that

‖Rk,r,µ‖Hk ≤ C2k/µ. (2.15)
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for all k ≥ k2, r ∈ [a, b], and µ ∈
[
eck

2
, edk

2]
.

Proof. For any φ ∈ Hk, by integrating by parts, we obtain

〈Rk,r,µ, φ〉Hk =

∫
R4

(
W 3
k,r,µ −∆Wk,r,µ − fWk,r,µ

)
φdx

=

∫
R4

(
W 3
k,r,µ −

k∑
i=1

U3
i,k,r,µ − fWk,r,µ

)
φdx

= O

( k∑
i=1

∫
R4

(∑
j 6=i

k∑
l=1

Uj,k,r,µUl,k,r,µ + |f |
)
Ui,k,r,µ |φ| dx

)
. (2.16)

By using Hölder’s inequality and Sobolev’s inequality, it follows from (2.16) that

‖Rk,r,µ‖Hk =
k∑
i=1

O

(
k
∑
j 6=i

∥∥U2
i,k,r,µUj,k,r,µ

∥∥
L4/3 + ‖fUi,k,r,µ‖L4/3

)
. (2.17)

We start with estimating the first term in (2.17). For any α ∈ {1, . . . , k}, we define

Ωα,k,r :=
{

(y1, y2, y3, y4) ∈ R4 : 〈(y1, y2, 0, 0) , xα,k,r〉 ≥ cos (π/k)
}
.

We then write ∫
R4

U
8/3
i,k,r,µU

4/3
j,k,r,µdx =

k∑
α=1

∫
Ωα,k,r

U
8/3
i,k,r,µU

4/3
j,k,r,µdx. (2.18)

We observe that if α 6= j, then

|x− xj,k,r| ≥ |x− xα,k,r| and |x− xj,k,r| ≥
1

2
|xα,k,r − xj,k,r| (2.19)

for all x ∈ Ωα,k,r. For any i, j, α ∈ {1, . . . , k} such that i 6= j, by using (2.18), we

obtain
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Ui,k,r,µ (x)8/3 Uj,k,r,µ (x)4/3

≤



28/3
(
2
√

2
)4
µ4/3(

1 + µ2 |x− xi,k,r|2
)8/3 |xi,k,r − xj,k,r|8/3

if α = i

28/3
(
2
√

2
)4
µ4/3(

1 + µ2 |x− xα,k,r|2
)8/3 |xi,k,r − xα,k,r|8/3

if α 6= i

(2.20)

for all x ∈ Ωα,k,r\ {xα,k,r}. By using (2.18) and (2.20) and straightforward estimates,

we obtain

∫
R4

U
8/3
i,k,r,µU

4/3
j,k,r,µdx = O

(
µ−8/3

|xi,k,r − xj,k,r|8/3
+
∑
α 6=i

µ−8/3

|xi,k,r − xα,k,r|8/3

)

= O

(
µ−8/3

|xi,k,r − xj,k,r|8/3
+
k8/3

µ8/3

)
. (2.21)

It follows from (2.21) that

∑
j 6=i

∥∥U2
i,k,r,µUj,k,r,µ

∥∥
L4/3 = O

(
k (k/µ)2) (2.22)

Now, we estimate the second term in (2.18). Since f ∈ L∞ (R4)∩L2 (R4), by applying

Hölder’s inequality and straightforward estimates, we obtain

∫
R4\B(xi,k,r,1)

|fUi,k,r,µ|4/3 dx = O

(∫
R4\B(xi,k,r,1)

|Ui,k,r,µ|4 dx

)1/3


= O
(
µ−4/3

)
(2.23)
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and ∫
B(xi,k,r,1)

|fUi,k,r,µ|4/3 dx = O

(∫
B(xi,k,r,1)

|Ui,k,r,µ|4/3 dx

)

= O
(
µ−4/3

)
. (2.24)

It follows from (2.23) and (2.24) that

‖fUi,k,r,µ‖L4/3 = O (1/µ) . (2.25)

Finally, (2.15) follows from (2.22) and (2.25).

We can now prove Proposition 2.2.1 by using Lemmas 2.3.1 and 2.3.2.

Proof of Proposition 2.2.1. We define

Tk,r,µ (φ) := L−1
k,r,µ (Qk,r,µ (Nk,r,µ (φ) +Rk,r,µ)) ∀φ ∈ Pk,r,µ

and

Vk,r,µ :=
{
φ ∈ Pk,r,µ : ‖φ‖Hk ≤ C0k/µ

}
where C0 > 0 is a constant to be fixed later on. It follows from Lemmas 2.3.1 and

2.3.2 that

‖Tk,r,µ (φ)‖Hk ≤ C1

(
‖Nk,r,µ (φ)‖Hk + C2k/µ

)
(2.26)

for all k ≥ k2, r ∈ [a, b], and µ ∈
[
eck

2
, edk

2]
. By integrating by parts and using

Hölder’s inequality, Sobolev’s inequality, and straightforward estimates, we obtain

〈Nk,r,µ (φ) , ψ〉Hk =

∫
R4

(
(Wk,r,µ + φ)3

+ −W
3
k,r,µ − 3W 2

k,r,µφ
)
ψdx

= O
((
‖Wk,r,µ‖L4 ‖φ‖2

Hk
+ ‖φ‖3

Hk

)
‖ψ‖Hk

)
(2.27)
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for all ψ ∈ Hk. Proceeding as in (2.18)–(2.22), we obtain∫
R4

W 4
k,r,µdx = O

(
k∑
i=1

∫
R4

(
U4
i,k,r,µ +

∑
j 6=i

U2
i,k,r,µU

2
j,k,r,µ

)
dx

)

= O
(
k + k (k/µ)4 lnµ

)
. (2.28)

It follows from (2.27) and (2.28) that

‖Nk,r,µ (φ)‖Hk = O
(
k1/4 ‖φ‖2

Hk
+ ‖φ‖3

Hk

)
. (2.29)

Letting C0 be large enough so that C0 > C1C2, it follows from (2.26) and (2.29) that

there exists a constant k3 > 0 such that

Tk,r,µ (Vk,r,µ) ⊂ Vk,r,µ (2.30)

for all k ≥ k3, r ∈ [a, b], and µ ∈
[
eck

2
, edk

2]
. Now, we prove that if k is large enough,

then Tk,r,µ is a contraction map from Vk,r,µ to itself, i.e.

‖Tk,r,µ (φ1)− Tk,r,µ (φ2)‖Hk ≤ C ‖φ1 − φ2‖Hk ∀φ1, φ2 ∈ Vk,r,µ. (2.31)

for some constant C ∈ (0, 1). It follows from Lemma 2.3.1 that

‖Tk,r,µ (φ1)− Tk,r,µ (φ2)‖Hk ≤ C1 ‖Nk,r,µ (φ1)−Nk,r,µ (φ2)‖Hk (2.32)

By integrating by parts and using Hölder’s inequality, Sobolev’s inequality, and

(2.28), we obtain
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〈Nk,r,µ (φ1)−Nk,r,µ (φ2) , ψ〉Hk

=

∫
R4

(
(Wk,r,µ + φ1)3

+ − (Wk,r,µ + φ2)3
+ − 3W 2

k,r,µ (φ1 − φ2)
)
ψdx

= O
( (
‖Wk,r,µ‖L4 + ‖φ1‖Hk + ‖φ2‖Hk

)
×
(
‖φ1‖Hk + ‖φ2‖Hk

)
‖φ1 − φ2‖Hk ‖ψ‖Hk

)
= O

( (
k1/4 + ‖φ1‖Hk + ‖φ2‖Hk

)
×
(
‖φ1‖Hk + ‖φ2‖Hk

)
‖φ1 − φ2‖Hk ‖ψ‖Hk

)
(2.33)

It follows from (2.33) that

‖Nk,r,µ (φ1)−Nk,r,µ (φ2)‖Hk = o
(
‖φ1 − φ2‖Hk

)
(2.34)

as k → ∞ uniformly in r ∈ [a, b], µ ∈
[
eck

2
, edk

2]
, and φ1, φ2 ∈ Vk,r,µ. We then

obtain (2.31) by putting together (2.32) and (2.34). It follows from (2.30) and (2.31)

that there exists a constant k4 ≥ k3 such that for any k ≥ k4, r ∈ [a, b], and

µ ∈
[
eck

2
, edk

2]
, there exists a unique solution φk,r,µ ∈ Vk,r,µ of (2.3). The continuous

differentiability of (r, µ) 7→ φk,r,µ is standard.

Now, we prove the last part of Proposition 2.2.1. We let (rk, µk) ∈ [a, b] ×[
eck

2
, edk

2]
be a critical point of Ik. Since φk,r,µ is a solution of (2.3), we obtain that

there exist c1,k and c2,k such that

DI (Wk,rk,µk + φk,rk,µk) =
2∑
j=1

cj,k

k∑
i=1

〈Zi,j,k,rk,µk , ·〉Hk . (2.35)
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It follows from (2.35) that

0 =
∂Ik
∂r

(rk, µk)

=
2∑
j=1

cj,k

k∑
i=1

〈
Zi,j,k,rk,µk ,

d

dr
[Wk,r,µk + φk,r,µk ]r=rk

〉
Hk

=
2∑
j=1

cj,k

k∑
i=1

(
µk

k∑
α=1

〈Zi,j,k,rk,µk , Zα,1,k,rk,µk〉Hk

+

〈
Zi,j,k,rk,µk ,

d

dr
[φk,r,µk ]r=rk

〉
Hk

)
(2.36)

and

0 =
∂Ik
∂µ

(rk, µk)

=
2∑
j=1

cj,k

k∑
i=1

〈
Zi,j,k,rk,µk ,

d

dµ
[Wk,rk,µ + φk,rk,µ]µ=µk

〉
Hk

=
2∑
j=1

cj,k

k∑
i=1

(
1

µk

k∑
α=1

〈Zi,j,k,rk,µk , Zα,2,k,rk,µk〉Hk

+

〈
Zi,j,k,rk,µk ,

d

dµ
[φk,rk,µ]µ=µk

〉
Hk

)
. (2.37)

For any i, α ∈ {1, . . . , k} and j, β ∈ {1, 2}, direct calculations yield

〈Zi,j,k,rk,µk , Zα,β,k,rk,µk〉Hk = Λjδiαδjβ + o (1) (2.38)

as k → ∞ where Λj > 0 is a constant and δiα := 1 if α = i and δiα := 0 if α 6= i.

Moreover, since φk,r,µ ∈ Pk,r,µ, we obtain

k∑
i=1

〈
Zi,j,k,rk,µk ,

d

dr
[φk,r,µk ]r=rk

〉
Hk

= −
k∑
i=1

〈
d

dr
[Zi,j,k,r,µk ]r=rk , φk,rk,µk

〉
Hk

29



and therefore by using Cauchy–Schwartz inequality and (2.4), we obtain∣∣∣∣∣
k∑
i=1

〈
Zi,j,k,rk,µk ,

d

dr
[φk,r,µk ]r=rk

〉
Hk

∣∣∣∣∣
≤

∥∥∥∥∥
k∑
i=1

d

dr
[Zi,j,k,r,µk ]r=rk

∥∥∥∥∥
Hk

‖φk,rk,µk‖Hk = o (kµk) . (2.39)

Similarly, we obtain∣∣∣∣∣
k∑
i=1

〈
Zi,j,k,rk,µk ,

d

dµ
[φk,rk,µ]µ=µk

〉
Hk

∣∣∣∣∣
≤

∥∥∥∥∥
k∑
i=1

d

dµ
[Zi,j,k,rk,µ]µ=µk

∥∥∥∥∥
Hk

‖φk,rk,µk‖Hk = o
(
kµ−1

k

)
. (2.40)

It follows from (2.36)–(2.40) that if k is large enough, then c1,k = c2,k = 0, i.e. the

function Wk,rk,µk + φk,rk,µk is a weak solution of the equation

∆u+ fu = u3
+ in R4.

By using the coercivity of the operator ∆ + f in D1,2 (R4), we obtain that u ≥ 0

a.e. in R4. It then follows from standard elliptic regularity theory and the strong

maximum principle that Wk,rk,µk + φk,rk,µk is a strong positive solution in C2,α (R4)

of (2.5).

2.4 Proof of Proposition 2.2.2

We prove Proposition 2.2.2 in this section. Throughout this section, we assume

that f ∈ C0,α (R4)∩L2 (R4) is radially symmetric about the point 0 and the operator

∆ + f is coercive in D1,2 (R4). First, we obtain the following result:
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Lemma 2.4.1. There exist constants c0, c1, c2 > 0 such that for any a, b, c, d > 0

such that a < b and c < d,

I (Wk,r,µ) = c0k + c1f (r)
k lnµ

µ2
− c2k

3

r2µ2
+ o

(
k3

µ2

)
(2.41)

as k →∞ uniformly in r ∈ [a, b] and µ ∈
[
eck

2
, edk

2]
.

Proof. By integrating by parts, we obtain

I (Wk,r,µ) =
1

2

∫
R4

(∆Wk,r,µ + fWk,r,µ)Wk,r,µdx−
1

4

∫
R4

W 4
k,r,µdx

=
1

2

∫
R4

( k∑
i,j=1

U3
i,k,r,µUj,k,r,µ + fW 2

k,r,µ −
1

2
W 4
k,r,µ

)
dx

=
1

2

k∑
i=1

∫
R4

(
fU2

i,k,r,µ +
1

2
U4
i,k,r,µ −

∑
j 6=i

U3
i,k,r,µUj,k,r,µ

+ f
∑
j 6=i

Ui,k,r,µUj,k,r,µ

)
dx

+ O

( k∑
i,l=1

∑
j 6=i

∑
m 6=l

∫
R4

Ui,k,r,µUj,k,r,µUl,k,r,µUm,k,r,µdx

)

=
1

2

k∑
i=1

∫
R4

(
fU2

i,k,r,µ +
1

2
U4
i,k,r,µ −

∑
j 6=i

U3
i,k,r,µUj,k,r,µ

+ f
∑
j 6=i

Ui,k,r,µUj,k,r,µ

)
dx+ O

(
k2

k∑
i=1

∑
j 6=i

∫
R4

U2
i,k,r,µU

2
j,k,r,µdx

)
(2.42)

Direct calculations yield∫
R4

U4
i,k,r,µdx =

(
2
√

2
)4
∫
R4

dx(
1 + |x|2

)4 . (2.43)
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and ∫
R4

fU2
i,k,r,µdx = 16π2f (r)

lnµ

µ2
+ o

(
lnµ

µ2

)
(2.44)

as k →∞ uniformly in r ∈ [a, b] and µ ∈
[
eck

2
, edk

2]
. By splitting the integral as in

(2.18) and estimating each term, we obtain

∑
j 6=i

∫
R4

U3
i,k,r,µUj,k,r,µdx =

∑
j 6=i

∫
Ωi,k,r

64µ2(
1 + µ2 |x− xi,k,r|2

)3

×

(
1 + O

(
1Ωi,k,r\B(xi,|x1,k,r−x2,k,r|/2)

)
|xi,k,r − xj,k,r|2

+ O

(
µ−2 + |x− xi,k,r| |xi,k,r − xj,k,r|

|xi,k,r − xj,k,r|4
1B(xi,|x1,k,r−x2,k,r|/2)

))
dx

+ O

(∑
α 6=i

kµ

|xi,k,r − xα,k,r|3
∫

Ωα,k,r

dx(
1 + µ2 |x− xα,k,r|2

)5/2

)

=
∑
j 6=i

(
64µ−2

|xi,k,r − xj,k,r|2
∫
R4

dx(
1 + |x|2

)3 + O

(
kµ−3

|xi,k,r − xj,k,r|3

))

=
32k2

π2r2µ2

∫
R4

dx(
1 + |x|2

)3

∞∑
j=1

1

j2
+ o

(
k2

µ2

)
(2.45)

as k → ∞ uniformly in r ∈ [a, b] and µ ∈
[
eck

2
, edk

2]
. Moreover, straightforward

estimates give

∑
j 6=i

∫
R4\(B(xi,k,r,µ,|xi,k,r,µ−xj,k,r,µ|/2)∪B(xj,k,r,µ,|xi,k,r,µ−xj,k,r,µ|/2))

U2
i,k,r,µU

2
j,k,r,µdx

= O

(
µ−4

∑
j 6=i

∫
R4\(B(xi,k,r,µ,|xi,k,r,µ−xj,k,r,µ|/2)∪B(xj,k,r,µ,|xi,k,r,µ−xj,k,r,µ|/2))

|x− xi,k,r,µ|−4 |x− xj,k,r,µ|−4 dx

)

= O

(∑
j 6=i

µ−4

|xi,k,r,µ − xj,k,r,µ|4

)
= O

(
(k/µ)4) , (2.46)
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∑
j 6=i

∫
B(xi,k,r,µ,|xi,k,r,µ−xj,k,r,µ|/2)∪B(xj,k,r,µ,|xi,k,r,µ−xj,k,r,µ|/2)

U2
i,k,r,µU

2
j,k,r,µdx

= O

(∑
j 6=i

µ−4

|xi,k,r,µ − xj,k,r,µ|4

∫
B(0,µ|xi,k,r,µ−xj,k,r,µ|/2)

dx(
1 + |x|2

)2

)

= O

(∑
j 6=i

µ−4 lnµ

|xi,k,r,µ − xj,k,r,µ|4

)
= O

(
(k/µ)4 lnµ

)
, (2.47)

∑
j 6=i

∫
R4\(B(xi,k,r,µ,1)∪B(xj,k,r,µ,1))

fUi,k,r,µUj,k,r,µdx

= O

∑
j 6=i

(∫
R4\B(xj,k,r,µ,1)

U4
j,k,r,µdx

)1/2


= O

k(∫
R4\B(0,µ)

dx(
1 + |x|2

)4

)1/2
 = O

(
k

µ2

)
, (2.48)

and

∑
j 6=i

∫
B(xi,k,r,µ,1)∪B(xj,k,r,µ,1)

fUi,k,r,µUj,k,r,µdx

= O

(∑
j 6=i

∫
B(xi,k,r,µ,1)

Ui,k,r,µUj,k,r,µdx

)

= O

(∑
j 6=i

∫
B(xi,k,r,µ,1)

µ−2dx

|x− xi,k,r,µ|2 |x− xj,k,r,µ|2

)

= O

(
µ−2

∑
j 6=i

ln
1

|xi,k,r,µ − xj,k,r,µ|

)
= O

(
k ln k

µ2

)
(2.49)

as k → ∞ uniformly in r ∈ [a, b] and µ ∈
[
eck

2
, edk

2]
. Finally, (2.41) follows from

(2.42)–(2.49).

We can now prove Proposition 2.2.2 by using Lemma 2.4.1.
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Proof of Proposition 2.2.2. By integrating by parts, we obtain

I (Wk,r,µ + φk,r,µ) = I (Wk,r,µ)− 〈Rk,r,µ, φk,r,µ〉Hk +
1

2
‖φk,r,µ‖2

Hk

− 1

4

∫
R4

(
(Wk,r,µ + φk,r,µ)4

+ −W
4
k,r,µ − 4W 3

k,r,µφk,r,µ
)
dx. (2.50)

By using Cauchy–Schwartz inequality, Lemma 2.3.1, and Proposition 2.2.1, we obtain

−〈Rk,r,µ, φk,r,µ〉Hk +
1

2
‖φk,r,µ‖2

Hk
= O

(
(k/µ)2) . (2.51)

Moreover, by using Hölder’s inequality, Sobolev’s inequality, (2.28), and Lemma 2.3.1,

we obtain ∫
R4

(
(Wk,r,µ + φk,r,µ)4

+ −W
4
k,r,µ − 4W 3

k,r,µφk,r,µ
)
dx

= O

(∫
R4

(
W 2
k,r,µ + φ2

k,r,µ

)
φ2
k,r,µdx

)
= O

(
‖Wk,r,µ‖2

L4 ‖φk,r,µ‖2
Hk

+ ‖φk,r,µ‖4
Hk

)
= O

(√
k (k/µ)2 + (k/µ)4 ). (2.52)

Finally, (2.6) follows from (2.50)–(2.52).

34



CHAPTER 3
BLOWING-UP CONSTRUCTIONS ON THE HALF SPHERE

In this chapter, we construct blowing-up solutions to a Yamabe-type problem

on manifolds with boundary. This chapter is based on the following paper:

• Shaodong Wang, Infinitely many blowing-up solutions for Yamabe-type problems on

manifolds with boundary, Commun. Pure Appl. Anal. 17 (2017), no. 1, 209-230.

3.1 Introduction and the main result

3.1.1 Introduction

In this paper, we consider the nonlinear Neumann problem
∆gu+ fu = 0 in M

∂u
∂ν

+ hu = u
n
n−2 on ∂M

(3.1)

where (M, g) is a Riemannian manifold with boundary, ∆g = −divg∇ is the Laplace-

Beltrami operator, and ν is the outward pointing normal vector. We are interested

in the question of existence of families of positive solutions (uε)ε>0 to problem (3.1)

which blow up in the sense that uε →∞ as ε→ 0.

In the case f ≡ n−2
4(n−1)

Scalg and h ≡ n−2
2
hg where Scalg and hg are the scalar

and mean curvature of M and ∂M respectively, the problem (3.1) is the Yamabe

problem with prescribed scalar curvature 0 and mean curvature 2
n−2

. Early references

on this problem are by Escobar [25,26]. See also Almaraz [1], Brendle and Chen [12],
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Chen [15] and Marques [44,45] for more recent results on the existence of solutions.

In this case, compactness results, i.e., nonexistence of blowing-up solutions have been

obtained by Almaraz [2], Disconzi and Khuri [19] and Felli and Ahmedou [28,29] (see

also Han and Li [33] in the case where the prescribed scalar curvature is a positive

constant). With regard to existence results, Almaraz [3] and Disconzi and Khuri [19]

obtained exitence results of blowing-up solutions to (3.1) when n > 25 in case f and

h are the potentials of the Yamabe problem.

Ghimenti, Micheletti and Pistoia [30,31] have recently obtained existence results

of positive blowing-up solutions to problem (3.1) when n > 7 with perturbations on

the nonlinearity, f ≡ n−2
4(n−1)

Scalg and h 6= n−2
2
hg (in [30]) and on the potential,

f ≡ n−2
4(n−1)

Scalg and h ≡ n−2
2
hg (in [31]).

In this paper, we prove existence results of positive blowing-up solutions to (3.1)

with unbounded energy (see energy functional in (3.11)) for n > 3 when (M, g) is

the standard half-sphere. Our main result is as follows:

Theorem 3.1.1. Let (M, g) be the standard half-sphere of dimensions n > 3. If

f ≡ n−2
4(n−1)

Scalg and h is a positive constant, then there exists a family of positive

blowing-up solutions (uε)ε>0 to (3.1) with ‖∇uε‖L2(M) →∞ as ε→ 0.

Theorem 3.1.1 is the analogue for manifolds with boundary of the result obtained

by Chen, Wei and Yan [16] for the equation

∆gu+ fu = u
n+2
n−2 , u > 0
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on the standard sphere of dimensions n > 5 (see also Vétois and Wang [54] in case

n = 4). Remark that such solutions do not exist in case n = 3 for manifolds without

boundary due to the energy bound obtained by Li and Zhu [42].

There has been many works on the question of existence of blowing-up solutions

of Yamabe-type problems on manifolds without boundary. In this case we refer to

for instance Druet [20,21], Khuri, Marques and Schoen [36], Li and Zhang [38–40], Li

and Zhu [42], Marques [43], Schoen [48,49] for compactness results, i.e., nonexistence

of blowing-up solutions and Brendle [11], Brendle and Marques [13], Chen, Wei and

Yan [16], Druet and Hebey [22], Esposito, Pistoia and Vétois [27], Hebey and Wei [35],

Thizy and Vétois [52] for existence results. Needless to say, we do not pretend to

any exhaustivity in this list. We also refer to Hebey [34] for a reference in book form

on this topic.

We will prove Theorem 3.1.1 by proving the more general Theorem 3.1.2 on a

half-space. The proof of Theorem 3.1.2 relies on a Lyapunov-Schmidt type method

as in the paper of Chen, Wei and Yan [16]. This method for constructing solutions

with infinitely many peaks was invented and successfully used in papers by Wang,

Wei and Yan [56,57] and Wei and Yan [58–61]. The case when n = 3 is critical in this

problem. In this case we manage to get a logarithm term in the energy estimate and

the number of peaks in our construction behaves as a logarithm of the peaks’ height.

This is in contrast with the case when n > 4 where the number of peaks behaves

as a power of the peaks’ height. We will prove Theorem 3.1.2 in Section 3.2. The

reduction will be carried out in Section 3.3. In Section 3.4 we perform the estimate

of the energy.
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3.1.2 A more general result on a half-space

We will prove Theorem 3.1.1 by proving the following more general results on a

half-space. We say that the operator ∆ with boundary condition ∂
∂µ

+ h is coercive

in D1,2(Rn
+) if ∫

Rn+
|Du|2 +

∫
∂Rn+

hu2 > C‖u‖2
D1,2(Rn+)

for some C > 0. Here D1,2(Rn
+) is defined to be the completion of smooth functions

with with compact support in Rn
+ with respect to the norm ‖u‖D1,2(Rn+) = ‖Du‖L2(Rn+).

Theorem 3.1.2. Let M = Rn
+ = Rn−1 × [0,+∞) be the Euclidean half-space of

dimension n > 3. Assume that f ≡ 0, h ∈ C1(∂Rn
+) ∩ Ln−1(∂Rn

+) is a radial

function and the operator ∆ with boundary condition ∂
∂µ

+h is coercive in D1,2(Rn
+).

Assume moreover that rh(r) has a local strict maximum or minimum point when

n > 4 and a strict local maximum point when n = 3 at some r0 > 0 with h(r0) > 0.

Then there exists infinitely many positive solutions in D1,2(Rn
+) to (3.1) whose energy

can be made arbitrarily large.

Now we prove Theorem 3.1.1.

Proof of Theorem 3.1.1. When M is the standard half-sphere, we take the stereo-

graphic projection Φp: Sn → Rn:

Φp(x) = (
x1

1− xn+1

, ...,
xn

1− xn+1

).
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Now g = ϕ2g0 = ( 2
1+|x|2 )2g0 where g0 is the Euclidean metric. Let v = ϕ

n−2
2 u. With

a direct computation we get that problem (3.1) is equivalent to
∆v = 0 in Rn

+

∂v
∂ν

+ 2h
1+|y|2v = v

n
n−2 on ∂Rn

+.

It is easy to check that if h is a positive constant as in Theorem 3.1.1, 2h
1+|y|2 ∈

C1(∂Rn
+)∩Ln−1(∂Rn

+) is a radial function and 2hr
1+r2

has a strict local maximum point

at r0 = 1. Moreover, the coercivity follows from 2h
1+|y|2 > 0. So Theorem 3.1.1 is a

direct corollary of Theorem 3.1.2.

3.2 Proof of Theorem 3.1.2

We will prove Theorem 3.1.2 in this section. For any x ∈ ∂Rn
+ and µ > 0, we

define

Ux,µ(y) = B(
1

µ(yn + 1
µ
)2 + µ|ȳ − x̄|2

)
n−2
2 (3.2)

where B = (n − 2)
n−2
2 , x = (x̄, xn), y = (ȳ, yn) ∈ Rn

+ and n > 3. It is proved in Li

and Zhu [41] that (3.2) are all the positive solutions to the following problem:
∆u = 0 in Rn

+

∂u
∂ν

= u
n
n−2 on ∂Rn

+.

Fix k > 0 a positive integer, we define

Hs = {u ∈ D1,2(Rn
+) : u is even in y2, ..., yn−1, u(rcos(θ), rsin(θ), y′)

= u(rcos(θ +
2π

k
), rsin(θ +

2π

k
), y′), θ ∈ R, r > 0, (y1, y2, y

′) ∈ Rn
+}
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and the inner product in Hs as:

〈u, v〉 =

∫
Rn+
DuDv +

∫
∂Rn+

huv

and the norm ‖u‖2 = 〈u, u〉. It follows from the continuous embedding D1,2(Rn
+) ↪→

L
2(n−1)
n−2 (∂Rn

+) that there exists a constant kn > 0 such that

(

∫
∂Rn+
|u|

2(n−1)
n−2 dy)

n−2
n−1 6 k2

n

∫
Rn+
|du|2dy. (3.3)

We let u = i∗(G) ∈ D1,2(R+
n ) be the weak solution to


∆u = 0 in Rn

+

∂u
∂ν

+ hu = G on ∂Rn
+

in the sense that

〈φ, i∗(G)〉 =

∫
∂Rn+

Gφ

for any φ ∈ C∞c (Rn
+) and our problem (3.1) becomes: u = i∗(u

n
n−2 ).

For any i ∈ {1, ..., k} and r > 0, let xi = (rcos2(i−1)π
k

, rsin2(i−1)π
k

, 0) ∈ ∂Rn
+.

Define

Zi,r,µ,1 =
1

µ

∂Uxi,µ
∂r

= B
(n− 2)

〈
ȳ − x̄i, ∂xi∂r

〉
(µ((yn + 1

µ
)2 + |ȳ − x̄i|2))

n
2

, (3.4)

Zi,r,µ,2 = µ
∂Uxi,µ
∂µ

= −B(n− 2)

2

(µ(yn + 1
µ
)2 + µ|ȳ − x̄i|2 − 2(yn + 1

µ
))

(µ((yn + 1
µ
)2 + |ȳ − x̄i|2))

n
2

, (3.5)

Wk,r,µ =
k∑
i=1

Uxi,µ(y) (3.6)

and

Pk,r,µ = {Φ ∈ Hs : 〈
k∑
i=1

Zi,r,µ,j,Φ〉 = 0, j = 1, 2}.
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We also define Lk,r,µ: Hs → Pk,r,µ as a bounded linear operator by

Lk,r,µ(u) = Qk,r,µ(u− i∗( n

n− 2
W

2
n−2

k,r,µu)) (3.7)

for any u ∈ Hs, Wk,r,µ as in (3.6) where Qk,r,µ is the orthogonal projection map onto

Pk,r,µ. Throughout this paper, we let

µ ∈ [C1k
n−2
n−3 , C2k

n−2
n−3 ] (3.8)

when n > 4,

µ ∈ [eC3klnk, eC4klnk] (3.9)

when n = 3 and

r ∈ [r0 − δ, r0 + δ] (3.10)

for some 0 < C1 < C2, 0 < C3 < C4 and δ > 0 to be determined later in the proof of

Theorem 3.1.2. The energy functional is defined as:

I(u) =
1

2

∫
Rn+
|Du|2 +

1

2

∫
∂Rn+

hu2 − (n− 2)

2(n− 1)

∫
∂Rn+

u
2(n−1)
n−2

+ (3.11)

for any u ∈ Hs where u+ := max{u, 0}.

We will start by solving the following problem:

Qk,r,µ((Wk,r,µ + Φ)− i∗((Wk,r,µ + Φ)
n
n−2

+ )) = 0 (3.12)

in the projection space Pk,r,µ. Then we will show that there exists a critical point for

I(Wk,r,µ + Φ). From there we will conclude the proof of Theorem 3.1.2.
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We state our existence result of solutions in Pk,r,µ as Proposition 3.2.1 below.

We refer to Section 3.3 for the proof of this result.

Proposition 3.2.1. Let µ, r be as in (3.8), (3.9) and (3.10). There exists k0 > 0

and C > 0 independent of k such that (3.12) has a unique solution Φk,r,µ in Pk,r,µ for

every k > k0 and

‖Φk,r,µ‖ 6 C
k

µ

when n > 5,

‖Φk,r,µ‖ 6 C
klnµ

µ

when n = 4, and

‖Φk,r,µ‖ 6 C
k

µ
1
2

when n=3. Moreover if (r̄k, µ̄k) is a critical point of I(Wk,r,µ+Φk,r,µ), then Wk,r̄k,µ̄k +

Φk,r̄k,µ̄k is a positive solution to (3.1).

Once we have solved problem (3.12) in Pk,r,µ, we need to perform the estimate

of the energy I(Wk,r,µ+Φk,r,µ) where I is defined in (3.11). We state this estimate in

Proposition 3.2.2 below. We refer to Section 3.4 for the proof of Proposition 3.2.2.

Proposition 3.2.2. Let Wk,r,µ be defined as in (3.6), I be defined as in (3.11) and

Φk,r,µ ∈ Pk,r,µ be the solution we obtained from Proposition 3.2.1. Let µ, r be as in

(3.8), (3.9), (3.10). We have

I(Wk,r,µ + Φk,r,µ) = k(a+
bh(r)

µ
− ckn−2

µn−2rn−2
+O(

1

µ1+σ
)),

∂I(Wk,r,µ + Φk,r,µ)

∂µ
= k(−bh(r)

µ2
+
c(n− 2)kn−2

µn−1rn−2
+O(

1

µ2+σ
))
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when n > 4, and

I(Wk,r,µ + Φk,r,µ) = k(a+
bh(r)lnµ

µ
− cklnk

µr
+O(

k

µ
))

when n = 3 for some σ, a, b, c > 0 independent of k.

Now during the proof of Theorem 3.1.2, we need the following Lemma 3.2.3

from Thizy and Vétois [52] to find a critical point for the energy in the presence of

a saddle point when n > 4.

Lemma 3.2.3 (Thizy and Vétois [52]). Let n1, n2 be two integers, Ω1 be a bounded

and open subset of Rn1, Ω2 be a bounded open and smooth subset of Rn2, and Ω =

Ω1 × Ω2. Let F be a C2-function in a neighborhood of Ω̄ such that

1. The outward normal derivative of F on Ω1 × ∂Ω2 is positive,

2. There exists x̄ ∈ Ω1 such that infΩ2 F (x̄, ) > sup∂Ω1×Ω2
F.

Then F has a critical point in the interior of Ω.

Now we prove Theorem 3.1.2.

Proof of Theorem 3.1.2. For k large we want to show that there exists a critical point

(r̄k, µ̄k) of I(Wk,r,µ + Φk,r,µ). By Proposition 3.2.1 we know Wk,r̄k,µ̄k + Φk,r̄k,µ̄k is a

positive solution to (3.1). Here I(Wk,r,µ + Φk,r,µ) is as in Proposition 3.2.2. We first

prove for n > 4. Let µ0,k(r) be such that

−bh(r)

µ2
0,k

+
c(n− 2)kn−2

µn−1
0,k r

n−2
= 0

namely

µ0,k(r) = (
c(n− 2)kn−2

bh(r)rn−2
)

1
n−3 = (

c(n− 2)

bh(r)rn−2
)

1
n−3k

n−2
n−3 . (3.13)
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Let N0(r) = ( c(n−2)
bh(r)rn−2 )

1
n−3 . By continuity of h and since h(r0) > 0, we can choose

the numbers C1, C2 and δ in (3.8) and (3.10) such that

C1 < N0(r) < C2

for any r ∈ (r0−δ, r0 +δ). By direct computation we get from Proposition 3.2.2 that

∂I(Wk,r,µ+Φk,r,µ)

∂µ
> 0 when µ = (N0(r)− 1

k
n−2
n−3 θ

)k
n−2
n−3 , and

∂I(Wk,r,µ+Φk,r,µ)

∂µ
< 0 when µ =

(N0(r)+ 1

k
n−2
n−3 θ

)k
n−2
n−3 for some σ > θ > 0 where σ is as in Proposition 3.2.2. Thus there

exists µ̄k(r) ∈ ((N0(r)− 1

k
n−2
n−3 θ

)k
n−2
n−3 , (N0(r)+ 1

k
n−2
n−3 θ

)k
n−2
n−3 ) such that I(Wk,r,µ+Φk,r,µ)

attains a local maximum point in µ at µ̄k(r).

On the other hand, letting Nk(r) = µ̄k(r)k
2−n
n−3 and using (3.13), we have

bh(r)

µ̄k
− ckn−2

µ̄kn−2rn−2

= (
bh(r)

Nk(r)
− c

Nk(r)n−2rn−2
)

1

k
n−2
n−3

= (
bh(r)

N0(r)
− c

N0(r)n−2rn−2
+O(|Nk(r)−N0(r)|2))

1

k
n−2
n−3

= (
n− 3

n− 2

bh(r)

N0(r)
+O(

1

µ2θ
0,k

))
1

k
n−2
n−3

= (b′(rh(r))
n−2
n−3 +O(

1

µ2θ
0,k

))
1

k
n−2
n−3

(3.14)

for some b′ > 0 independent of k. So now if rh(r) has a local maximum point at

r0 > 0, it follows from (3.14) and Proposition 3.2.2 that there exists r̄k ∈ (r0−δ, r0+δ)

such that I(Wk,r,µ + Φk,r,µ) attains a local maximum point at (r̄k, µ̄k(r̄k)). In case

rh(r) has a local minimum point at r0 > 0 with h(r0) > 0, there exists δ > 0 such

that

0 < r0h(r0) < rh(r)
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for all r ∈ [r0 − δ, r0 + δ]. Define a new variable t = µ−N0(r)k
n−2
n−3 and

Jk(r, t) := −I(W
k,r,t+N0(r)k

n−2
n−3

+ Φ
k,r,t+N0(r)k

n−2
n−3

).

It follows from Proposition 3.2.2 that ∂Jk(r,t)
∂t

< 0 when t = −k
n−2
n−3

(1−θ), and ∂Jk(r,t)
∂µ

> 0

when t = k
n−2
n−3

(1−θ) for some 0 < θ < σ independent of k. By using (3.14) we have

that

inf
t∈Ω2

(Jk(r0, t)) > sup
(r,t)∈∂Ω1×Ω2

(Jk(r, t))

for k large and Ω1 = (r0−δ, r0+δ), Ω2 = (−k
n−2
n−3

(1−θ), k
n−2
n−3

(1−θ)). Now by Lemma 3.2.3

we get that Jk(r, t) has a critical point in the interior of Ω = Ω1 × Ω2. It is easy to

check that this is equivalent to the existence of a critical point for I(Wk,r,µ + Φk,r,µ).

Now when n = 3, define µk(s) := esklnk for s > 0. Then it follows from

Proposition 3.2.2 that

I(Wk,r,µ + Φk,r,µ) := Ik(r, s) = ak + k2lnke−sklnk(bh(r)s− c

r
+ o(1)) (3.15)

when k is large. Since rh(r) attains a strict local maximum point at r0 > 0 with

h(r0) > 0, there exists δ > 0 such that

r0h(r0) > rh(r) > 0

for all r ∈ [r0−δ, r0 +δ]. Define Jk(r, t) := Ik(r, sk(r)+t) where sk(r, t) = c
brh(r)

+ 1
klnk

is the maximum point of e−sklnk(bh(r)s− c
r
) in s. Using (3.15) we have

Jk(r, t) = ak + k2lnke−(sk(r)+t)klnk(bh(r)t+ o(1)). (3.16)
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Taking 0 < t0 < min{ sk(r0)
2
, 2

3
(sk(r0 + δ)− sk(r0)), 2

3
(sk(r0 − δ)− sk(r0))}, it follows

from (3.16) that

Jk(r, t0) < Jk(r0,
t0
2

),

Jk(r,−t0) < Jk(r0,
t0
2

),

and

Jk(r0 ± δ, t) < Jk(r0,
t0
2

)

for k large and (r, t) ∈ [r0 − δ, r0 + δ] × [−t0, t0]. Thus we know that Jk has a local

maximum point in (r, t) ∈ [r0 − δ, r0 + δ]× [−t0, t0] for large k. This ends the proof

of Theorem 3.1.2.

3.3 Finite dimensional reduction

We will prove Proposition 3.2.1 in this section. The problem (3.12) can be

written as

Lk,r,µ(Φ) = Qk,r,µ(Nk,r,µ(Φ) +Rk,r,µ) (3.17)

in Pk,r,µ where Lk,r,µ is as in (3.7), Qk,r,µ is the orthogonal projection, Φ ∈ Pk,r,µ and

Nk,r,µ(Φ) =i∗((Wk,r,µ + Φ)
n
n−2

+ )− i∗(W
n
n−2

k,r,µ)− i∗( n

n− 2
W

2
n−2 Φ), (3.18)

Rk,r,µ = i∗(W
n
n−2

k,r,µ)−Wk,r,µ. (3.19)

First of all we will perform the estimate of Nk,r,µ(Φ) in Lemma 3.3.1 and the estimate

ofRk,r,µ in Lemma 3.3.2. Then we will prove Lk,r,µ is an isomorphism in the projection

space Pk,r,µ in Lemma 3.3.3 and Lemma 3.3.4. After that we will complete the proof

of Proposition 3.2.1.
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Lemma 3.3.1. Let µ, r be as in (3.8), (3.9) and (3.10). There exists C > 0 inde-

pendent of k such that

| 〈Nk,r,µ(Φ), v〉 | 6 C‖Φ‖
n
n−2‖v‖

when n > 4,

| 〈Nk,r,µ(Φ), v〉 | 6 Cmax(k
1
4‖Φ‖2, ‖Φ‖3)‖v‖

when n = 3 for any Φ, v ∈ Pk,r,µ.

Proof. By the definition of Nk,r,µ(Φ) we have that

〈Nk,r,µ(Φ), v〉 =

∫
∂Rn+

((Wk,r,µ + Φ)
n
n−2

+ −W
n
n−2

k,r,µ −
n

n− 2
W

2
n−2

k,r,µΦ)v.

Since

|(Wk,r,µ + Φ)
n
n−2

+ −W
n
n−2

k,r,µ −
n

n− 2
W

2
n−2

k,r,µΦ| 6 C|Φ|
n
n−2

when n > 4, and

|(Wk,r,µ + Φ)
n
n−2

+ −W
n
n−2

k,r,µ −
n

n− 2
W

2
n−2

k,r,µΦ| 6 Cmax(Wk,r,µ|Φ|2, |Φ|3)

when n = 3, we have by Hölder and Sobolev inequalities that

| 〈Nk,r,µ(Φ), v〉 | 6 C‖Φ‖
n
n−2‖v‖

when n > 4,

| 〈Nk,r,µ(Φ), v〉 | 6 Cmax(k
1
4‖Φ‖2, ‖Φ‖3)‖v‖

when n = 3.

Now we estimate Rk,r,µ.
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Lemma 3.3.2. Let µ, r be as in (3.8), (3.9) and (3.10). There exists C > 0 inde-

pendent of k and k0 positive integer such that for k > k0

‖Rk,r,µ‖ 6 C
k

µ

when n > 5,

‖Rk,r,µ‖ 6 C
klnµ

µ

when n = 4,

‖Rk,r,µ‖ 6 C
k

µ
1
2

when n = 3.

Proof. For any v ∈ Pk,r,µ we have by the definition of Rk,r,µ that

〈Rk,r,µ, v〉 =

∫
Rn+

(−DWk,r,µDv) +

∫
∂Rn+

(W
n
n−2

k,r,µv − hWk,r,µv)

=

∫
∂Rn+

(W
n
n−2

k,r,µ −
k∑
i=1

U
n
n−2
xi,µ )v +

∫
∂Rn+

(−hWk,r,µv)

= I1 + I2.

Step 1: Estimate I1.

Define

Ωj =

{
y = (y1, y2, y

′) :

〈
(y1, y2)

|(y1, y2)|
,
xj
|xj|

〉
> cos(

π

k
)

}
. (3.20)

Then we have∫
∂Rn+

(W
n
n−2

k,r,µ −
k∑
i=1

U
n
n−2
xi,µ )v = k

∫
Ω1∩∂Rn+

(W
n
n−2

k,r,µ −
k∑
i=1

U
n
n−2
xi,µ )v.
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We have that in Ω1,

|W
n
n−2

k,r,µ −
k∑
i=1

U
n
n−2
xi,µ | 6 C(U

2
n−2
x1,µ

k∑
j=2

Uxj ,µ + (
k∑
j=2

Uxj ,µ)
n
n−2 )

for some C > 0 and for j 6= 1,

|y − xj| >
1

2
|xj − x1|, |y − xj| > |y − x1|.

We also have on ∂Rn
+

Uxj ,µ = C(
µ

1 + µ2|ȳ − x̄j|2
)
n−2
2 .

Thus

U
2

n−2
x1,µUxj ,µ 6 Cµ

n
2 (

1

1 + µ2|ȳ − x̄1|2
)
n+ε
4 (

1

µ2|x̄j − x̄1|2
)
n−ε
4

for some ε > 0 small when n > 4 to be fixed later and ε = 1 in case n = 3. Therefore

U
2

n−2
x1,µ

k∑
j=2

Uxj ,µ 6 Cµ
n
2 (

1

1 + µ2|ȳ − x̄1|2
)
n+ε
4

k∑
j=2

(
1

µ|x̄j − x̄1|
)
n−ε
2

for some C > 0. By Hölder and Sobolev inequalities we have

|
∫

Ω1∩∂Rn+
U

2
n−2
x1,µ

k∑
j=2

Uxj ,µv| 6 C
k∑
j=2

(
1

µ|x̄j − x̄1|
)
n−ε
2

1

k
n−2

2(n−1)

‖v‖

for some C > 0. Similarly we have for some C > 0,

Uxj ,µ 6
C

(µ|x̄j − x̄1|)
n−2
2
− (n−2)ε

2n

µ
n−2
2

(1 + µ|ȳ − x̄1|)
n−2
2

+
(n−2)ε

2n

.

So

(
k∑
j=2

Uxj ,µ)
n
n−2 6 C(

k∑
j=2

1

(µ|x̄j − x̄1|)
n−2
2
− (n−2)ε

2n

)
n
n−2

µ
n
2

(1 + µ|ȳ − x̄1|)
n+ε
2

.
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Therefore∫
Ω1∩∂Rn+

(
k∑
j=2

Uxjµ)
n
n−2v 6 C

1

k
n−2

2(n−1)

(
k∑
j=2

1

(µ|x̄j − x̄1|)
n−2
2
− (n−2)ε

2n

)
n
n−2‖v‖

for some C > 0. When n > 4, taking 0 < ε < 2
(n−1)(n−2)

, we get that

|I1| 6 Ck(
k
ε
2

k
n−2

2(n−1)

(
k

µ
)
n−ε
2 )‖v‖

when n > 4 and

|I1| 6 Ck
3
4 (
k3

µ
)‖v‖

when n = 3 for some C > 0 independent of k.

Step 2: Estimate of I2.

By the symmetry condition of h,Wk,r,µ and Pk,r,µ we know

|I2| = |
∫
∂Rn+

hWk,r,µv| = k|
∫
∂Rn+

hUx1,µv|.

On one hand, we have by h ∈ L2(R2) and Hölder inequality that

|
∫
∂Rn+\B1(x1)

hUx1,µv| 6
C

µ
n−2
2

‖v‖

for some C > 0. On the other hand, again by Hölder inequality, we have for some

C > 0

|
∫
B1(x1)

hUx1,µv| 6 C(

∫
B1(x1)

U
2(n−1)
n

x1,µ )
n

2(n−1)‖v‖.

By direct calculation we have

(

∫
B1(x1)

U
2(n−1)
n

x1,µ )
n

2(n−1) = O(
1

µ
)
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when n > 5,

(

∫
B1(x1)

U
2(n−1)
n

x1,µ )
n

2(n−1) = O(
lnµ

µ
)

when n = 4 and

(

∫
B1(x1)

U
2(n−1)
n

x1,µ )
n

2(n−1) = O(
1

µ
1
2

)

when n = 3. Combining all these above we have that

|I2| = k|
∫
∂Rn+

hUx1,µv| 6 C
k

µ
1
2

‖v‖

when n = 3,

|I2| 6 C
klnµ

µ
‖v‖

when n = 4,

|I2| 6 C
k

µ
‖v‖

when n > 5 for some C > 0 independent of k. Using the estimate of I1 and I2, we

conclude the proof of Lemma 3.3.2.

Now we want to show that Lk,r,µ is an isomorphism in Pk,r,µ.

Lemma 3.3.3. Let Lk,r,µ be as in (3.7). There exists C > 0 and k0 > 0 such that

for every k > k0 we have

‖Lk,r,µΦ‖ > C‖Φ‖

for every Φ ∈ Pk,r,µ.
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Proof. For any u, v in Pk,r,µ we have that

〈Lk,r,µu, v〉 = 〈u, v〉 −
〈
i∗(

n

n− 2
W

2
n−2

k,r,µu), v

〉
=

∫
Rn+
DuDv +

∫
∂Rn+

(hkuv −
n

n− 2
W

2
n−2

k,r,µuv).

Assume that for any k there exists Φk ∈ Pk,r,µ, rk, µk such that

‖Φk‖ =
√
k, ‖Lk,r,µΦk‖ = o(

√
k),

Thus ∫
Ω1

|DΦk|2 +

∫
∂Rn+∩Ω1

hΦ2
k = 1 (3.21)

and ∫
Ω1

DΦkDv +

∫
∂Rn+∩Ω1

(hΦkv −
n

n− 2
W

2
n−2

k,r,µΦkv) = o(1) (3.22)

where Ω1 is as in (3.20) for any v ∈ Pk,r,µ. We now apply the rescaling

Φ̃k(y) = µ
−n−2

2
k Φk(µ

−1
k y + x1).

Then from (3.21) we get that Φ̃k is bounded in D1,2(Rn
+). So by (3.3) we may assume

that Φ̃k converges weakly to Φ in D1,2(Rn
+), L

2(n−1)
n−2 (∂Rn

+) and strongly in L2
loc(Rn

+).

We define

〈u, v〉Ω1
=

∫
Ω1

DuDv +

∫
∂Rn+∩Ω1

huv

and

‖u‖Ω1 =

∫
Ω1

|Du|2 +

∫
∂Rn+∩Ω1

hu2
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for all u, v ∈ Pk,r,µ. Now by applying the rescaling to〈
k∑
i=1

Zi,rk,µk,j,Φk

〉
Ω1

= 0

j = 1, 2, and let k go to infinity we get that

0 =

∫
Rn+
D
∂U0,1

∂x1

DΦ =

∫
∂Rn+

n

n− 2
U

2
n−2

0,1

∂U0,1

∂x1

Φ (3.23)

and

0 =

∫
Rn+
D
∂U0,µ

∂µ
|µ=1DΦ =

∫
∂Rn+

n

n− 2
U

2
n−2

0,1

∂U0,µ

∂µ
|µ=1Φ. (3.24)

So now by the definition of Lk,r,µ we have that there exists c1,k, c2,k ∈ R such that

Φk − i∗(
n

n− 2
W

2
n−2

k,r,µΦk)− Lk,r,µΦk =
2∑
j=1

cj,k

k∑
i=1

Zi,rk,µk,j. (3.25)

Apply
∑k

l=1 Zl,rk,µk,1,
∑k

l=1 Zl,rk,µk,2 on (3.25), rescale and pass to the limit. We get

that

2∑
j=1

cj,k

〈
k∑
i=1

Zi,rk,µk,j,
k∑
l=1

Zl,rk,µk,1

〉
Ω1

=

∫
∂Rn+

n

n− 2
U

2
n−2

0,1

∂U0,1

∂x1

Φ + o(1) (3.26)

and

2∑
j=1

cj,k

〈
k∑
i=1

Zi,rk,µk,j,

k∑
l=1

Zl,rkµk,2

〉
Ω1

=

∫
∂Rn+

n

n− 2
U

2
n−2

0,1

∂U0,µ

∂µ
|µ=1Φ + o(1). (3.27)

Moreover, 〈
k∑
i=1

Zi,rkµk,j,
k∑
i=1

Zi,rkµk,l

〉
Ω1

= Cjδj,l + o(1) (3.28)
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for some constant Cj > 0 independent of k. By using (3.23), (3.24), (3.26), (3.27)

and (3.28) we have

‖Φk − i∗(
n

n− 2
W

2
n−2

k,r,µΦk)‖Ω1

= O(‖Lk,r,µΦk‖Ω1 +
2∑
j=1

|cj,k|‖
k∑
i=1

Zi,rk,µk,j‖Ω1) = o(1). (3.29)

So for all v ∈ Pk,r,µ we get

〈Φk, v〉Ω1
=

〈
Φk − i∗(

n

n− 2
W

2
n−2

k,r,µΦk) + i∗(
n

n− 2
W

2
n−2

k,r,µΦk), v

〉
Ω1

=

∫
∂Rn+∩Ω1

n

n− 2
W

2
n−2

k,r,µΦkv + o(1) =

∫
∂Rn+

n

n− 2
U

2
n−2

0,1 Φṽ + o(1).

On the other hand,

〈Φk, v〉Ω1
=

∫
Rn+
DΦDṽ + o(1). (3.30)

Thus we know Φ is a solution of
−∆Φ = 0 in Rn

+

∂Φ
∂ν

= n
n−2

U
2

n−2

0,1 Φ on ∂Rn
+.

(3.31)

It is proved by S.Almaraz [2] that the set of solutions to this linearized problem

(3.31) is formed by a basis of
{
∂U0,1

∂xi
, ∂U0,µ

∂µ
|µ=1

}
. By the symmetry of Φ with respect

to y2, ..., yn−1 and (3.23),(3.24), we get that Φ = 0 almost everywhere. Now by the

convergence properties of Φ̃k we have

‖Φk‖2
Ω1

=

∫
∂Rn+∩Ω̃1

n

n− 2
U

2
n−2

0,1 Φ̃k

2
+ o(1) = o(1) (3.32)

(Ω̃1 comes from Ω1 by rescaling) which is a contradiction to (3.21). Thus we have

proven the lemma.
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Now by Lemma 3.3.3 and the Fredholm alternative, we have:

Lemma 3.3.4. There exists k0 > 0 such that for every k > k0, Lk,r,µ is an isomor-

phism on Pk,r,µ.

We can now prove Proposition 3.2.1.

Proof of Proposition 3.2.1. When n > 5, let

V =

{
v ∈ Pk,r,µ : ‖v‖ 6 C0k

µ

}
for some C0 > 0 to be determined later. Now (3.17) is equivalent to

Φ = T (Φ) = L−1
k,r,µ(Qk,r,µ(Nk,r,µ(Φ) +Rk,r,µ)).

By Lemma 3.3.4 we know that there exists k0 > 0 such that for k > k0,

‖T (Φ)‖ 6 C(‖Nk,r,µ(Φ)‖+ ‖Rk,r,µ‖)

for some C > 0 independent of k. When n > 5, it follows from lemmas 3.3.1 and

3.3.2 that for all Φ ∈ V ,

‖T (Φ)‖ 6 C(‖Nk,r,µ(Φ)‖+ ‖Rk,r,µ‖)

6 C(‖Φ‖
n
n−2 +

k

µ
)

6 C0(
k

µ
)

for some C0 > 0. Since µ ∈ [C1k
n−2
n−3 , C2k

n−2
n−3 ], choosing C0 from previous inequality,

we see that T is a map from V to V. Now we want to show that T is a contraction
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map. By direct computation we have that for Φ1,Φ2 ∈ V ,

| 〈Nk,r,µ(Φ1)−Nk,r,µ(Φ2), v〉 |

6 C(

∫
∂Rn+

(|Φ1|
2

n−2 + |Φ2|
2

n−2 )|Φ1 − Φ2||v|)

6 C(‖Φ1‖
2

n−2 + ‖Φ2‖
2

n−2 )‖Φ1 − Φ2‖‖v‖

for some C > 0 and v ∈ Pk,r,µ. Thus by Lemma 3.3.4, there exists k′0 > 0 such that

for k > k′0

‖T (Φ1)− T (Φ2)‖ 6 1

2
‖Φ1 − Φ2‖.

Thus we have proven that T is a contraction map. When n = 4 we pick

V =

{
v ∈ Pk,r,µ : ‖v‖ 6 C ′0klnµ

µ

}
and when n = 3, we pick

V =

{
v ∈ Pk,r,µ : ‖v‖ 6 C ′′0k

µ
1
2

}
for some C ′0, C

′′
0 > 0 and similarly we can show that T is a contraction map. Now by

the contraction mapping theorem we prove that there exists a unique solution Φk,r,µ

to (3.17) in V . Now if there exists a critical point (r̄k, µ̄k) of I(Wk,r,µ + Φk,r,µ), we
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have by (3.28) and the estimate of Φk,r,µ that

0 =
∂I(Wk,r,µ + Φk,r,µ)

∂µ
(r̄k, µ̄k)

=

〈
I ′(Wk,r,µ + Φk,r,µ),

∂(Wk,r,µ + Φk,r,µ)

∂µ

〉
(r̄k, µ̄k)

=

〈
2∑
j=1

k∑
i=1

cj,kZi,r,µ,j,
∂(Wk,r,µ + Φk,r,µ)

∂µ

〉
(r̄k, µ̄k)

=
1

µ

〈
2∑
j=1

k∑
i=1

cj,kZi,r,µ,j,

k∑
i=1

Zi,r,µ,2

〉
(r̄k, µ̄k)

+

〈
2∑
j=1

k∑
i=1

cj,kZi,r,µ,j,
∂Φk,r,µ

∂µ

〉
(r̄k, µ̄k)

=
c1,k

µ

〈
k∑
i=1

Zi,r,µ,1,
k∑
i=1

Zi,r,µ,2

〉
+
c2,k

µ

〈
k∑
i=1

Zi,r,µ,2,
k∑
i=1

Zi,r,µ,2

〉

+

〈
2∑
j=1

k∑
i=1

cj,k
∂Zi,r,µ,j
∂µ

,Φk,r,µ

〉

= c1,ko(
k

µ
) + c2,k(C2

k

µ
+ o(

k

µ
)) + o(

k

µ
(|c1,k|+ |c2,k|)). (3.33)

for some C2 independent of k and c1,k, c2,k depending on k. Similarly we have

0 =
∂I(Wk,r,µ + Φk,r,µ)

∂r
(r̄k, µ̄k)

= c2,ko(µk) + c1,k(C1µk + o(µk)) + o(µk(|c1,k|+ |c2,k|)). (3.34)

Thus from (3.33) and (3.34) we have

c1,k + c2,k + o(|c1,k|+ |c2,k|) = 0. (3.35)

From (3.35) we know

c1,k = c2,k = 0

57



for k large which means Wk,r̄k,µ̄k + Φk,r̄k,µ̄k is a solution to
∆u = 0 in Rn

+

∂u
∂ν

+ hu = u
n
n−2

+ on ∂Rn
+.

By using the coercivity condition we obtain that Wk,r̄k,µ̄k + Φk,r̄k,µ̄k > 0 a.e. in ∂Rn
+.

Thus Wk,r̄k,µ̄k + Φk,r̄k,µ̄k is a positive solution to (3.1).

3.4 Energy expansion

We perform the estimate of I(Wk,r,µ + Φk,r,µ) in this section where Wk,r,µ is as

in (3.6) and Φk,r,µ ∈ Pk,r,µ is the unique solution we obtained in Proposition 3.2.1.

Recall that

I(u) =
1

2

∫
Rn+
|Du|2 +

1

2

∫
∂Rn+

hu2 − (n− 2)

2(n− 1)

∫
∂Rn+

u
2(n−1)
n−2

+ .

Lemma 3.4.1. Let µ be as in (3.8) and (3.9). We have

I(Wk,r,µ + Φk,r,µ) = I(Wk,r,µ) +O(
k

µ1+σ
)

when n > 4 and

I(Wk,r,µ + Φk,r,µ) = I(Wk,r,µ) +O(
k2

µ
)

when n=3 for some σ > 0 independent of k.

Proof. Since

DI(Wk,r,µ + Φk,r,µ)(Φk,r,µ) = 〈I ′(Wk,r,µ + Φk,r,µ),Φk,r,µ〉 = 0
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we know when n > 4 there exists 0 6 t1, t2 6 1 such that

I(Wk,r,µ + Φk,r,µ)

= I(Wk,r,µ) +DI(Wk,r,µ + t1Φk,r,µ)(Φk,r,µ)

= I(Wk,r,µ) + (t1 − 1)D2I(Wk,r,µ + t2Φk,r,µ)(Φk,r,µ,Φk,r,µ)

= I(Wk,r,µ) +O(

∫
Rn+

(|DΦk,r,µ|2) +

∫
∂Rn+

(hΦ2
k,r,µ −

n

n− 2
(Wk,r,µ + Φk,r,µ)

2
n−2 Φ2

k,r,µ))

= I(Wk,r,µ) +O(‖Φk,r,µ‖2 + ‖Φk,r,µ‖
2(n−1)
n−2 +

∫
∂Rn+

W
2

n−2

k,r,µΦ2
k,r,µ).

Since Φk,r,µ ∈ Pk is the solution to (3.17), using (3.7) we have

〈Lk,r,µ(Φk,r,µ),Φk,r,µ〉 = ‖Φk,r,µ‖2 − n

n− 2

∫
∂Rn+

W
2

n−2

k,r,µΦ2
k,r,µ

= 〈Nk,r,µ(Φk,r,µ) +Rk,r,µ,Φk,r,µ〉 .

Thus

|
∫
∂Rn+

W
2

n−2

k,r,µΦ2
k,r,µ| = O(‖Φk,r,µ‖2 + (‖Nk,r,µ(Φk,r,µ)‖+ ‖Rk,r,µ‖)‖Φk,r,µ‖).

So from Proposition 3.2.1 we get

I(Wk,r,µ + Φk,r,µ) = I(Wk,r,µ) +O(
k

µ1+σ
)

when n > 4 and

I(Wk,r,µ + Φk,r,µ) = I(Wk,r,µ) +O(
k2

µ
).

when n = 3 for some σ > 0 independent of k.
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Lemma 3.4.2. Let µ, r be as in (3.8), (3.9) and (3.10). We have

∂I(Wk,r,µ + Φk,r,µ)

∂µ
=

〈
I ′(Wk,r,µ),

∂Wk,r,µ

∂µ

〉
+O(

k

µ2+σ
)

when n > 4 for some σ > 0 independent of k.

Proof. Now

∂I(Wk,r,µ + Φk,r,µ)

∂µ
=

〈
I ′(Wk,r,µ + Φk,r,µ),

∂(Wk,r,µ + Φk,r,µ)

∂µ

〉
=

〈
I ′(Wk,r,µ + Φk,r,µ),

∂Wk,r,µ

∂µ

〉
+

〈
I ′(Wk,r,µ + Φk,r,µ),

∂Φk,r,µ

∂µ

〉
= I1 + I2.

Step 1: Estimate of I1.

I1 =

∫
Rn+

(D(Wk,r,µ + Φk,r,µ)D
∂Wk,r,µ

∂µ
+

∫
∂Rn+

(h(Wk,r,µ + Φk,r,µ)
∂Wk,r,µ

∂µ

− (Wk,r,µ + Φk,r,µ)
n
n−2

∂Wk,r,µ

∂µ
)

=

〈
I ′(Wk,r,µ),

∂Wk,r,µ

∂µ

〉
+

∫
Rn+
DΦk,r,µD

∂Wk,r,µ

∂µ
+

∫
∂Rn+

hΦk,r,µ
∂W

∂µ

−
∫
∂Rn+

((Wk,r,µ + Φk,r,µ)
n
n−2

∂Wk,r,µ

∂µ
−W

n
n−2

k,r,µ

∂Wk,r,µ

∂µ
). (3.36)
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When n > 4, by Hölder inequality we have∫
∂Rn+

((Wk,r,µ + Φk,r,µ)
n
n−2

∂Wk,r,µ

∂µ
−W

n
n−2

k,r,µ

∂Wk,r,µ

∂µ
)

=
n

n− 2

∫
∂Rn+

W
2

n−2

k,r,µ

∂Wk,r,µ

∂µ
Φk,r,µ +O(

∫
∂Rn+
|Φk,r,µ|

n
n−2 |∂Wk,r,µ

∂µ
|)

=
n

n− 2

∫
∂Rn+

W
2

n−2

k,r,µ

∂Wk,r,µ

∂µ
Φk,r,µ

+O(
‖Φk,r,µ‖

n
n−2

µ
(

∫
∂Rn+
|Wk,r,µ|

2(n−1)
n−2 )

n−2
2(n−1) )

=
n

n− 2

∫
∂Rn+

W
2

n−2

k,r,µ

∂Wk,r,µ

∂µ
Φk,r,µ +O(

k‖Φk,r,µ‖
n
n−2

µ
). (3.37)

Since Φk,r,µ ∈ Pk,r,µ, we get

0 =

∫
Rn+
D
∂Wk,r,µ

∂µ
DΦk,r,µ +

∫
∂Rn+

h
∂Wk,r,µ

∂µ
Φk,r,µ (3.38)

which gives

0 =
k∑
i=1

(

∫
Rn+
D
∂Uxi,µ
∂µ

DΦk,r,µ +

∫
∂Rn+

h
∂Uxi,µ
∂µ

Φk,r,µ)

=

∫
∂Rn+

(
n

n− 2

k∑
i=1

U
2

n−2
xi,µ

∂Uxi,µ
∂µ

Φk,r,µ + h
k∑
i=1

∂Uxi,µ
∂µ

Φk,r,µ). (3.39)

Combining (3.36)-(3.39), we get

I1 =

〈
I ′(Wk,r,µ),

∂Wk,r,µ

∂µ

〉
−
∫
∂Rn+

(
n

n− 2
W

2
n−2

k,r,µ

∂Wk,r,µ

∂µ
Φk,r,µ

− n

n− 2

k∑
i=1

U
2

n−2
xi,µ

∂Uxi,µ
∂µ

Φk,r,µ − h
k∑
i=1

∂Uxi,µ
∂µ

Φk,r,µ)

+O(
k‖Φk,r,µ‖

n
n−2

µ
). (3.40)
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Now we estimate the terms in (3.40) above. The estimates (3.41) and (3.42) are

obtained similarly as in the proof of Lemma 3.3.2 except here we replace v by Φk,r,µ

and we use the result of Proposition 3.2.1. When n > 4,

|
∫
∂Rn+

h
k∑
i=1

∂Uxi,µ
∂µ

Φk,r,µ| = k|
∫
∂Rn+

h
∂Ux1,µ
∂µ

Φk,r,µ|

6
Ck

µ

∫
∂Rn+
|h||Ux1,µ||Φk,r,µ|

6
Cklnµ

µ2
‖Φk,r,µ‖

6
Ck

µ2+σ
(3.41)

and

|
∫
Rn+

(W 2
k,r,µ

∂Wk,r,µ

∂µ
Φk,r,µ −

k∑
i=1

U
2

n−2
xi,µ

∂Uxi,µ
∂µ

Φk,r,µ)|

= k|
∫

Ω1

(W
2

n−2

k,r,µ

∂Wk,r,µ

∂µ
Φk,r,µ −

k∑
i=1

U
2

n−2
xi,µ

∂Uxi,µ
∂µ

Φk,r,µ)|

6
Ck

µ

∫
Ω1

|W
n
n−2

k,r,µΦk,r,µ −
k∑
i=1

U
n
n−2
xi,µ Φk,r,µ|

6
Ck

µ2+σ
(3.42)

for some C > 0 and σ > 0 independent of k where Ω1 is as in (3.20). Now from

(3.41), (3.42) and Proposition 3.2.1 we have〈
I ′(Wk,r,µ + Φk,r,µ),

∂Wk,r,µ

∂µ

〉
=

〈
I ′(Wk,r,µ),

∂Wk,r,µ

∂µ

〉
+O(

k

µ2+σ
) (3.43)

for some σ > 0 independent of k.

Step 2: Estimate of I2.
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It follows from (3.7), (3.18) and (3.19) that〈
I ′(Wk,r,µ + Φk,r,µ),

∂Φk,r,µ

∂µ

〉
=

2∑
j=1

cj,k

〈
k∑
i=1

Zi,r,µ,j,
∂Φk,r,µ

∂µ

〉

for some cj,k constants depending on k. Here Lk,r,µ, Nk,r,µ, Rk,r,µ are as in (3.17),

(3.18) and (3.19), Zi,r,µ,j are as in (3.4) and (3.5). We have by (3.17) that

Lk,r,µ(Φk,r,µ)−Nk,r,µ(Φk,r,µ)−Rk,r,µ =
2∑
j=1

cj,k

k∑
i=1

Zi,r,µ,j (3.44)

for some cj,k and since Φk,r,µ ∈ Pk,r,µ,〈
Lk,r,µ(Φk,r,µ),

k∑
i=1

Zi,r,µ,j

〉
=

〈
Lk,r,µ(

k∑
i=1

Zi,r,µ,j),Φk,r,µ

〉

= − n

n− 2

∫
∂Rn+

W
2

n−2

k,r,µ

k∑
i=1

Zi,r,µ,jΦk,r,µ. (3.45)

By (3.4), (3.5) and (3.45) and we have,

|

〈
Lk,r,µ(Φk,r,µ),

k∑
i=1

Zi,r,µ,1

〉
| = O(

1

µ
|
∫
∂Rn+

(W
2

n−2

k,r,µ

∂Wk,r,µ

∂r
Φk,r,µ)|) (3.46)

and

|

〈
Lk,r,µ(Φk,r,µ),

k∑
i=1

Zi,r,µ,2

〉
| = O(µ|

∫
∂Rn+

(W
2

n−2

k,r,µ

∂Wk,r,µ

∂µ
Φk,r,µ)|) (3.47)
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Since Φk,r,µ ∈ Pk,r,µ, we obtain∫
∂Rn+

W
2

n−2

k,r,µ

∂Wk,r,µ

∂µ
Φk,r,µ

=

∫
∂Rn+

(W
2

n−2

k,r,µ

∂Wk,r,µ

∂µ
Φk,r,µ −

k∑
i=1

U
2

n−2
xi,µ

∂Uxi,µ
∂µ

Φk,r,µ

− n− 2

n
h

k∑
i=1

∂Uxi,µ
∂µ

Φk,r,µ) (3.48)

and ∫
∂Rn+

W
2

n−2

k,r,µ

∂W

∂r
Φk,r,µ

=

∫
∂Rn+

(W
2

n−2

k,r,µ

∂Wk,r,µ

∂r
Φk,r,µ −

k∑
i=1

U
2

n−2
xi,µ

∂Uxi,µ
∂r

Φk,r,µ

− n− 2

n
h

k∑
i=1

∂Uxi,µ
∂r

Φk,r,µ). (3.49)

By using (3.41), (3.42), (3.46)-(3.49) and analogue estimates for
∂Wk,r,µ

∂r
we obtain

when n > 4,

|

〈
Lk,r,µ(Φk,r,µ),

k∑
i=1

Zi,r,µ,1

〉
| = O(

k

µ2+σ
) (3.50)

and

|

〈
Lk,r,µ(Φk,r,µ),

k∑
i=1

Zi,r,µ,2

〉
| = O(

k

µ1+σ
) (3.51)

for some σ > 0 independent of k. Since

cj,k

〈
k∑
i=1

Zi,r,µ,j,
k∑
i=1

Zi,r,µ,j

〉

=

〈
Lk,r,µ(Φk,r,µ)−Nk,r,µ(Φk,r,µ)−Rk,r,µ,

k∑
i=1

Zi,r,µ,j

〉
, (3.52)
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we have that

|cj,k| = O(
|
〈
Lk,r,µ(Φk,r,µ),

∑k
i=1 Zi,r,µ,j

〉
|

‖
∑k

i=1 Zi,r,µ,j‖2

+
(‖Nk,r,µ(Φk,r,µ)‖+ ‖Rk,r,µ‖)‖

∑k
i=1 Zi,r,µ,j‖

‖
∑k

i=1 Zi,r,µ,j‖2
). (3.53)

By combining (3.28), (3.50), (3.51), (3.53), Proposition 3.2.1 and Lemmas 3.3.1 and

3.3.2 we get that when n > 4

|I2| = |
2∑
j=1

cj,k

k∑
i=1

〈
Zi,r,µ,j,

∂Φk,r,µ

∂µ

〉
|

= |
2∑
j=1

cj,k

k∑
i=1

〈
Φk,r,µ,

∂Zi,r,µ,j
∂µ

〉
|

= O(|
2∑
j=1

|cj,k|‖Φk,r,µ‖
k∑
i=1

∂Zi,r,µ,j
∂µ

‖)

= O(
k

µ
(

2∑
j=1

|cj,k|‖Φk,r,µ‖))

= O(
k

µ2+σ
)

for some σ > 0 independent of k. This ends the proof of Lemma 3.4.2.

We perform the energy expansion in Lemma 3.4.3 below.

Lemma 3.4.3. Let r, µ be as in (3.8), (3.9) and (3.10). We have

I(Wk,r,µ) = k(a+
bh(r)

µ
− ckn−2

µn−2rn−2
+O(

1

µ1+σ
)),

∂I(Wk,r,µ)

∂µ
= k(−bh(r)

µ2
+
c(n− 2)kn−2

µn−1rn−2
+O(

1

µ2+σ
))
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when n > 4, and

I(Wk,r,µ) = k(a+
bh(r)lnµ

µ
− cklnk

µr
+O(

k

µ
))

when n=3 for some σ, a, b, c > 0 constants independent of k.

Proof. By symmetry we know∫
Rn+
|DWk,r,µ|2 =

∫
Rn+
−∆Wk,r,µWk,r,µ +

∫
∂Rn+

∂Wk,r,µ

∂ν
Wk,r,µ

=

∫
∂Rn+

k∑
i=1

U
n
n−2
xi,µWk,r,µ =

k∑
i=1

k∑
j=1

(

∫
∂Rn+

U
n
n−2
xi,µ Uxj ,µ)

= k(

∫
∂Rn+

U
2(n−1)
n−2

0,1 +
k∑
i=2

∫
∂Rn+

U
n
n−2
x1,µUxi,µ)

= k(

∫
∂Rn+

U
2(n−1)
n−2

0,1 +
k∑
i=2

B0

µn−2|xi − x1|n−2
+O(

k∑
i=2

1

µn−2+σ|xi − x1|n−2+σ
))

(3.54)

for some B0, σ > 0 indepedent of k. Again by symmetry,∫
∂Rn+
|W

2(n−1)
n−2

k,r,µ | = k

∫
Ω1∩∂Rn+

|W
2(n−1)
n−2

k,r,µ |

= k(

∫
Ω1∩∂Rn+

U
2(n−1)
n−2

x1,µ +
2(n− 1)

n− 2

∫
Ω1∩∂Rn+

k∑
i=2

U
n
n−2
xi,µ Ux1,µ

+O(

∫
Ω1∩∂Rn+

(
k∑
i=2

Ux1,µ)
n−1
n−2U

n−1
n−2
xi,µ ))

= k(

∫
Rn+
U

2(n−1)
n−2

0,1 +
2(n− 1)

n− 2

k∑
i=2

B0

µn−2|xi − x1|n−2

+O(
k∑
i=2

1

µn−2+σ|xi − x1|n−2+σ
)). (3.55)
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Moreover, we have∫
∂Rn+

hW 2
k,r,µ = k(

∫
∂Rn+

hU2
x1,µ

+O(

∫
∂Rn+

h

k∑
i=2

Ux1,µUxi,µ)). (3.56)

Since h ∈ Ln−1(Rn
+), we get that:∫

∂Rn+
hU2

x1,µ
=
Ch(r)

µ
+O(

1

µ1+σ
) (3.57)

and ∫
∂Rn+

hUx1,µUxi,µ = O(
1

µn−2|x1 − xi|n−3
) (3.58)

when n > 4, ∫
R2

hU2
x1,µ

=
Ch(r)lnµ

µ
+O(

1

µ
) (3.59)

and ∫
R2

hUx1,µUxi,µ = O(
ln|x1 − xi|

µ
) (3.60)

when n = 3 for i 6= 1 and some C, σ > 0 independent of k. Combining (3.54)-(3.60)

and noting that
k∑
i=2

1

|xi − x1|n
=
Ckn

rn
+O(kn−1) (3.61)

when n > 2,
k∑
i=2

1

|xi − x1|
=
Cklnk

r
+O(k) (3.62)

and
k∑
i=2

ln|xi − x1| = O(k) (3.63)

we have

I(Wk,r,µ) = k(a+
bh(r)

µ
− ckn−2

µn−2rn−2
+O(

1

µ1+σ
)) (3.64)
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when n > 4, and

I(Wk,r,µ) = k(a+
bh(r)lnµ

µ
− cklnk

µr
+O(

k

µ
)) (3.65)

when n = 3 for some a, b, c, σ > 0 independent of k. Applying similar arguments to

∂I(Wk,r,µ)

∂µ
when n > 4 we get that

∂I(Wk,r,µ)

∂µ
= k(−bh(r)

µ2
+
c(n− 2)kn−2

µn−1rn−2
+O(

1

µ2+σ
)) (3.66)

when n > 4 for some a, b, c, σ > 0 independent of k.

Now we can finish the proof of Proposition 3.2.2.

Proof of Proposition 3.2.2. Now Proposition 3.2.2 is a direct corollary of Lemmas 3.4.1-

3.4.3.
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CHAPTER 4
A COMPACTNESS RESULT

In this chapter, we prove a compactness result to a boundary Yamabe problem

in dimension n = 3. This chapter is based on the following paper:

• Sérgio Almaraz, Olivaine S. de Queiroz and Shaodong Wang, A compactness theorem

for scalar-flat metrics on 3-manifolds with boundary, J. Funct. Anal. (2018).

4.1 Introduction

Let (M, g) be a Riemannian n-dimensional manifold with boundary ∂M , and

let ∇ be its Riemannian connection. Denote by Rg its scalar curvature and by ∆g

its Laplace-Beltrami operator, which is the Hessian trace. By hg we denote the

boundary mean curvature with respect to the inward normal vector η, i.e., hg =

1
n−1

∑n−1
i=1 g(∇eiei, η) for any orthonormal frame {ei}n−1

i=1 of ∂M .

In this paper we study the question of compactness of the full set of positive

solutions to the equations 
Lgu = 0, inM,

Bgu+Kup = 0, on ∂M,

(4.1)

where 1 < p ≤ n
n−2

and K > 0 is a constant. Here, Lg = ∆g − n−2
4(n−1)

Rg is the

conformal Laplacian and Bg = ∂
∂η
− n−2

2
hg is the conformal boundary operator.

These equations have a very interesting geometrical meaning when p = n
n−2

. A

solution u > 0 of (4.1) represents a conformal metric g̃ = u
4

n−2 g with scalar curvature
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Rg̃ = 0 and boundary mean curvature hg̃ = 2
n−2

K, as (4.1) becomes a particular case

of the well known equations
Lgu+ n−2

4(n−1)
Rg̃u

n+2
n−2 = 0, inM,

Bgu+ n−2
2
hg̃u

n
n−2 = 0, on ∂M.

The existence of those metrics was first studied by Escobar [25] motivated by the

classical Yamabe problem on closed manifolds. Regularity of solutions was obtained

by Cherrier in [17].

The equations (4.1) have a variational formulation in terms of the functional

Q(u) =

∫
M
|∇gu|2 + n−2

4(n−1)
Rgu

2dvg + n−2
2

∫
∂M

hgu
2dσg(∫

∂M
|u|p+1dσg

) 2
p+1

,

where dvg and dσg denote the volume forms of M and ∂M , respectively. A function

u is a critical point for Q if and only if it solves (4.1). However, direct methods fail

to work when p = n
n−2

, as p+ 1 = 2(n−1)
n−2

is critical for the Sobolev trace embedding

H1(M) ↪→ Lp+1(∂M). This functional has also a geometrical meaning for the critical

exponent case as it becomes

Q(u) =

n−2
4(n−1)

∫
M
Rg̃dvg̃ + n−2

2

∫
∂M

hg̃dσg̃

areag̃(∂M)
n−2
n

.

Defining the conformal invariant

Q(M,∂M) = inf
{
Q(u); u ∈ C1(M̄), u 6= 0 on ∂M

}
,
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Escobar [26] observed that, when finite, Q(M,∂M) has the same sign of the first

eigenvalue λ1(Bg) of the problem
Lgu = 0, inM,

Bgu+ λu = 0, on ∂M .

If λ1(Bg) < 0, the solution of the equations (4.1) is unique. If λ1(Bg) = 0, the

equations (4.1) become linear and the solutions are unique up to a multiplication by

a positive constant. Hence, the only interesting case is the positive one.

When M is conformally equivalent to the unit ball Bn, the solutions of (4.1)

are well known. The only nontrivial examples occur when p = n
n−2

and they all

represent metrics isometric to the Euclidean one [24]. In his case, the conformal

diffeomorphisms of the ball produces a blowing-up family of solutions to (4.1).

Working in dimension n = 3, our main result extends to the general case the

work of Felli and Ould Ahmedou [29], that established compactness of the set of

solutions to (4.1) when ∂M is umbilic.

Theorem 4.1.1. Let (M, g) be a Riemannian 3-manifold with boundary ∂M . Sup-

pose that Q(M,∂M) > 0 and M is not conformally equivalent to the unit ball. Then,

given a small γ0 > 0, there exists C(M, g, γ0) > 0 such that for any p ∈
[
1 + γ0,

n
n−2

]
and any solution u > 0 of (4.1) we have

C−1 ≤ u ≤ C and ‖u‖C2,α(M) ≤ C ,

for some 0 < α < 1.

71



The subcritical Sobolev exponents p < n
n−2

in Theorem 4.1.1 provide a connec-

tion with the linear case. Although we omit the argument (see [1,28,29,33]), a proof

of existence of a solution to Escobar’s problem [25] can be achieved by computing

the Leray-Schauder degree of all solutions of equations (4.1).

In the case of manifolds without boundary, the question of compactness of the

full set of smooth solutions to the Yamabe equation was first raised by R. Schoen

in a topics course at Stanford University in 1988. A necessary condition is that

the manifold Mn is not conformally equivalent to the sphere Sn. This problem

was studied in [20, 21, 38, 39, 42, 43, 48, 51] and was completely solved in [11, 13, 36].

In [11], Brendle discovered the first smooth counterexamples for dimensions n ≥

52 (nonsmooth examples were obtained by Ambrosetti and Malchiodi in [9]). In

[36], Khuri, Marques and Schoen proved compactness for dimensions 3 ≤ n ≤ 24.

Their proof contains both a local and a global aspect. The local aspect involves the

vanishing of the Weyl tensor up to order [n−6
2

] at any blow-up point and the global

aspect involves the positive mass theorem. Finally, in [13], Brendle and Marques

extended the counterexamples of [11] to the remaining dimensions 25 ≤ n ≤ 51. In

the case of nonempty umbilical boundary, the same compactness and noncompactness

results were obtained by Disconzi and Khuri in [19] for the boundary condition

Bgu = 0.

Despite its additional technical difficulties, the question of compactness of the

solutions of (4.1) turns out to have great similarity with the one above for the

classical Yamabe equation. In [28] Felli and Ould Ahmedou prove compactness for

locally conformally flat manifolds with umbilic boundary, a result previously obtained

by Schoen [48] for the classical Yamabe equation. In [2] the first author proves
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the vanishing of the trace-free boundary second fundamental form at any blow-up

point, a result inspired by the vanishing of the Weyl tensor obtained by Li-Zhang

and Marques independently in [38, 39, 43]. On the other hand, the noncompactness

results of Brendle and Marques inspired the first author’s paper [3] which provides

counterexamples in dimensions n ≥ 25 to compactness in (4.1). So Theorem 4.1.1

ensures that there is a critical dimension 3 < n0 ≤ 25 such that compactness for the

set of positive smooth solutions of (4.1) holds for n < n0 and fails for n ≥ n0.

Although the corresponding result for the classical Yamabe equation in dimen-

sion 3 was obtained by Li and Zhu in [42], our approach to Theorem 4.1.1 makes use

of some further techniques of the later works [36, 43]. This is because the canonical

bubble, coming from the Euclidean metric on B3, fails to provide a good approxima-

tion for the blowing up solutions of (4.1).

The strategy of the proof of Theorem 4.1.1 is similar to the one proposed by

Schoen in the case of manifolds without boundary. It is based on finding local

obstructions to blow-up by means of a Pohozaev-type identity. Assuming that a

sequence {ui} of solutions has an isolated simple blow-up point, we approximate

{ui} by the standard Euclidean solution plus a correction term φi. The function φi

is defined as a solution to a non-homogeneous linear equation and is similar to the

one in [36]. We then use the Pohozaev identity to prove a local sign restriction in

dimension three, which allows the reduction to the simple blow-up case. This sign

restriction is used again to derive a contradiction with the positive mass theorem

established in [4] for manifolds modeled on the Euclidean half-space.

A key point in dimension three is that this hypothesis simplifies the estimates

on the right side of the Pohozaev identity as every geometric term, including φi,
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only contributes to the high order terms in the proof of the local sign restriction. It

contrasts with the case of higher dimensions where further estimates on the geometric

terms would be needed. Another point that differs from the mentioned papers on

compactness is that we only use a very rough control of the Green’s function. The

relation with the positive mass theorem comes from an integral expression obtained

by Brendle-Chen in [12].

This paper is organized as follows. In Section 4.2 we present some preliminaries

computations about the standard solution on the Euclidean half-space, Fermi co-

ordinates and the conformal invariant equation associated to (4.1). The important

Pohozaev identity and the mass term is studied in Section 4.3. The definition of

isolated and isolated simple blow-up points and some additional properties are col-

lected in Section 4.4, while the blow-up estimates are presented in Section 4.5. In

Section 4.6 we come back to the Pohozaev integral and prova a sign restriction and

consequences. Finally we give a proof of the main result in Section 4.7.

4.2 Preliminaries

4.2.1 Notations

Throughout this work we will make use of the index notation for tensors, com-

mas denoting covariant differentiation. We will adopt the summation convention

whenever confusion is not possible. When dealing with coordinates on manifolds

with boundary, we will use indices 1 ≤ i, j, k, l ≤ n − 1 and 1 ≤ a, b, c, d ≤ n. In

this context, lines under or over an object mean the restriction of the metric to the

boundary is involved.
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We will denote by g the Riemannian metric and set det g = det gab. The induced

metric on ∂M will be denoted by ḡ. We will denote by ∇g the covariant derivative

and by ∆g the Laplacian-Beltrami operator. By Rg or R we will denote the scalar

curvature. The second fundamental form of the boundary will be denoted by πkl and

the mean curvature, 1
n−1

tr(πkl), by hg or h.

By Rn
+ we will denote the half-space {z = (z1, ..., zn) ∈ Rn; zn ≥ 0}. If z ∈ Rn

+ we

set z̄ = (z1, ..., zn−1) ∈ Rn−1 ∼= ∂Rn
+. We define B+

δ (0) = {z ∈ Rn
+ ; |z| < δ}. We also

denote B+
δ = B+

δ (0) for short. We set ∂+B+
δ (0) = ∂B+

δ (0)∩Rn
+ = {z ∈ Rn

+ ; |z| = δ}

and ∂′B+
δ (0) = B+

δ (0) ∩ ∂Rn
+ = {z ∈ ∂Rn

+ ; |z| < δ}. Thus, ∂B+
δ (0) = ∂′B+

δ (0) ∪

∂+B+
δ (0).

In various parts of the text, we will make use of Fermi coordinates (see Definition

4.2.2 below)

ψ : B+
δ (0)→M

centered at a point x0 ∈ ∂M . In this case, we will work in B+
δ (0) ⊂ Rn

+.

4.2.2 Standard solutions in the Euclidean half-space

In this subsection we study the Euclidean Yamabe equation in Rn
+ and its lin-

earization.

The simplest example of solution to the Yamabe-type problem we are concerned

is the ball in Rn with the canonical Euclidean metric. This ball is conformally

equivalent to the half-space Rn
+ by the inversion F : Rn

+ → Bn\{(0, ..., 0,−1)} with

respect to the sphere with center (0, ..., 0,−1) and radius 1. Here, Bn is the Euclidean
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ball in Rn with center (0, ..., 0,−1/2) and radius 1/2. The expression for F is

F (y1, ...yn) =
(y1, ..., yn−1, yn + 1)

y2
1 + ...+ y2

n−1 + (yn + 1)2
+ (0, ..., 0,−1) ,

and of course its inverse mapping F−1 has the same expression. An easy calculation

shows that F is a conformal map and F ∗geucl = U
4

n−2 geucl in Rn
+, where geucl is the

Euclidean metric and U(y) = (y2
1 +...+y2

n−1+(yn+1)2)−
n−2
2 . The function U satisfies

∆U = 0 , in Rn
+ ,

∂U
∂yn

+ (n− 2)U
n
n−2 = 0 , on ∂Rn

+ .

(4.2)

Since the equations (4.2) are invariant by horizontal translations and scalings

with respect to the origin, we obtain the following family of solutions of (4.2):

Uλ,z(y) =

(
λ

(λ+ yn)2 +
∑n−1

j=1 (yj − zj)2

)n−2
2

, (4.3)

where λ > 0 and z = (z1, ..., zn−1) ∈ Rn−1.

In fact, the converse statement is also true: by a Liouville-type theorem in [41]

(see also [18, 24]), any non-negative solution to the equations (4.2) is of the form

(4.3) or is identically zero.

The existence of the family of solutions (4.3) has two important consequences.

First, we see that the set of solutions of the equations (4.2) is non-compact. In

particular, the set of solutions of (4.1) with p = n
n−2

is not compact when Mn is

conformally equivalent to Bn. Secondly, the functions ∂U
∂yj

, for j = 1, ..., n − 1, and
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n−2
2
U + yb ∂U

∂yb
, are solutions to the following homogeneous linear problem:

∆ψ = 0 , in Rn
+ ,

∂ψ
∂yn

+ nU
2

n−2ψ = 0 , on ∂Rn
+ .

(4.4)

Lemma 4.2.1. Suppose ψ is a solution to
∆ψ = 0 , in Rn

+

∂ψ
∂yn

+ nU
2

n−2ψ = 0 , on ∂Rn
+ .

(4.5)

If ψ(y) = O((1 + |y|)−α) for some α > 0, then there exist constants c1, ..., cn such

that

ψ(y) =
n−1∑
i=1

ci
∂U

∂yj
+ cn

(n− 2

2
U + yb

∂U

∂yb

)
Proof. This is [2, Lemma 2.1].

4.2.3 Coordinate expansions for the metric

Recall the definition of Fermi coordinates:

Definition 4.2.2. Let x0 ∈ ∂M and choose boundary geodesic normal coordinates

(z1, ..., zn−1), centered at x0, of the point x ∈ ∂M . We say that z = (z1, ..., zn), for

small zn ≥ 0, are the Fermi coordinates (centered at x0) of the point expx(znη(x)) ∈

M . Here, we denote by η(x) the inward unit normal vector to ∂M at x. In this case,

we have a map ψ(z) = expx(znη(x)), defined on a subset of Rn
+.
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It is easy to see that in these coordinates gnn ≡ 1 and gjn ≡ 0, for j = 1, ..., n−1.

The expansion for g in Fermi coordinates is given by:

gij(ψ(z)) = δij − 2πij(x0)zn +O(|z|2),

gij(ψ(z)) = δij + 2πij(x0)zn +O(|z|2). (4.6)

The existence of conformal Fermi coordinates, introduced in [44], is stated as follows:

Proposition 4.2.3. For any given integer N ≥ 1, there is a metric g̃, conformal to

g, such that in g̃-Fermi coordinates ψ̃ : B+
δ (0)→M centered at x0, we have

(det g̃)(ψ̃(z)) = 1 +O(|z|N) .

Moreover, g̃ can be written as g̃ = fg, where f is a positive function with f(x0) = 1

and
∂f

∂zk
(x0) = 0 for k = 1, ..., n−1. In this metric we also have h(ψ̃(z)) = O(|z|N−1).

Proof. The first part is [44, Proposition 3.1] and the last one follows from

hg =
−1

2(n− 1)
gijgij, n =

−1

2(n− 1)
(log det g), n .

Remark 4.2.4. Since we are only handling the 3-dimensional case, in this paper we

do not use Proposition 4.2.3 in its full generality. Indeed, N = 2 is enough for our

purposes here, and this case could be easily obtained by assuming the vanishing of

the boundary mean curvature.
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4.2.4 Conformal scalar and mean curvature equations

In this subsection we study the partial differential equation we will work with

in the next sections: 
Lgu = 0, inM ,

Bgu+ (n− 2)f−τup = 0, on ∂M ,

(4.7)

where τ = n
n−2
− p, 1 + γ0 ≤ p ≤ n

n−2
for some fixed γ0 > 0 and f is a positive

function.

The equations (4.7) have an important scaling invariance property. Fix x0 ∈ ∂M

and take δ > 0 small, and consider Fermi coordinates ψ : B+
δ (0) → M centered at

x0. Given s > 0 we define the renormalized function

v(y) = s
1
p−1u(ψ(sy)) , for y ∈ B+

δs−1(0) .

Then 
Lĝv = 0, inB+

δs−1(0) ,

Bĝv + (n− 2)f̂−τvp = 0, on ∂′B+
δs−1(0) ,

where f̂(y) = f(ψ(sy)) and the metric ĝ is defined by ĝkl(y) = gkl(ψ(sy)).

The reason to work with the equations (4.7), instead of (4.1), is that they have

important conformal invariance properies. Suppose g̃ = ζ
4

n−2 g is a metric conformal

to g. It follows from the properties

L
ζ

4
n−2 g

(ζ−1u) = ζ−
n+2
n−2Lgu and B

ζ
4

n−2 g
(ζ−1u) = ζ−

n
n−2Bgu
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that, if u is a solution of the equations (4.7), then ζ−1u satisfies
Lg̃(ζ

−1u) = 0, inM ,

Bg̃(ζ
−1u) + (n− 2)(ζf)−τ (ζ−1u)p = 0, on ∂M ,

which are again equations of the same type.

Notation. Let Ω ⊂ M be a domain in a Riemannian manifold (M, g). Let {gi} be

a sequence of metrics on Ω. We say that ui ∈Mi if ui > 0 satisfies
Lgiui = 0, in Ω ,

Bgiui + (n− 2)f−τii upii = 0, on Ω ∩ ∂M ,

(4.8)

where τi = n
n−2
− pi and 1 + γ0 ≤ pi ≤ n

n−2
for some fixed γ0 > 0.

In many parts of this article we will work with sequences {ui ∈Mi}∞i=1. In this

case, we assume that fi → f in the C1
loc topology, for some positive function f , and

that gi → g0 in the C3
loc topology, for some metric g0.

By the conformal invariance stated above, we are allowed to replace the metric

gi by ζ
4

n−2

i gi as long as we have control of the conformal factors ζi. In this case, we

replace the sequence {ui} by {ζ−1
i ui}. In particular, we can use conformal Fermi co-

ordinates (see Proposition 4.2.3) centered at some point xi ∈ ∂M , as those conformal

changes are uniformly controlled with respect to i by construction.

4.3 The Pohozaev identity and the mass term

Let g be a Riemannian metric on the half-ball B+
δ (0). For any x = (x1, ..., xn) ∈

Rn we set r = |x| =
√
x2

1 + ...+ x2
n. For any smooth function u on B+

δ (0) and
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0 < ρ < δ we define

P (u, ρ) =

∫
∂+B+

ρ (0)

(
n− 2

2
u
∂u

∂r
− r

2
|du|2 + r

∣∣∣∣∂u∂r
∣∣∣∣2
)
dσ+

ρ

p+ 1

∫
∂ (∂′B+

ρ (0))

Kf−τup+1dσ̄

and

P ′(u, ρ) =

∫
∂+B+

ρ (0)

(
n− 2

2
u
∂u

∂r
− r

2
|du|2 + r

∣∣∣∣∂u∂r
∣∣∣∣2
)
dσ .

An integration by parts [2, Proposition 3.1] gives the following Pohozaev-type

identity to be used in the analysis of blow-up sequences:

Proposition 4.3.1. If u is a solution of
∆gu− n−2

4(n−1)
Rgu = 0 , in B+

δ (0) ,

∂nu− n−2
2
hgu+Kf−τup = 0 , on ∂′B+

δ (0) ,

where K is a constant, then

P (u, ρ) = −
∫
B+
ρ (0)

(
xa∂au+

n− 2

2
u

)
Ag(u)dx+

n− 2

2

∫
∂′B+

ρ (0)

(
x̄k∂ku+

n− 2

2
u

)
hgudx̄

− τ

p+ 1

∫
∂′B+

ρ (0)

K(x̄k∂kf)f−τ−1up+1dx̄+

(
n− 1

p+ 1
− n− 2

2

)∫
∂′B+

ρ (0)

Kf−τup+1dx̄ ,

where Ag = ∆g −∆− n−2
4(n−1)

Rg. Here, ∆ stands for the Euclidean Laplacian.

While in Section 4.6 we will obtain a sign restriction for P ′(u, ρ) by means of

Proposition 4.3.1, in this section we handle P ′(u, ρ) directly and relate it with a

mass-type geometric invariant defined below.
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Lemma 4.3.2. If φ(x) = u(x)− |x|2−n then

P ′(u, ρ) =
n− 2

2

∫
∂+B+

ρ (0)

(
∂

∂r
r2−nφ(x)− r2−n∂φ

∂r

)
dσ

+
1

2

∫
∂+B+

ρ (0)

(
r
(∂φ
∂r

)2

− r|dφ|2 +
∂φ

∂r

(
(n− 2)φ+ r

∂φ

∂r

))
dσ .

Proof. Direct calculations give

n− 2

2
u∂ru−

r

2
|du|2 + r(∂ru)2 =

1

2
(∂ru)

(
(n− 2)u+ r∂ru

)
+
r

2

(
(∂ru)2 − |du|2

)
=

1

2

(
(n− 2)∂rr

2−nφ− (n− 2)r2−n∂rφ+ (n− 2)φ∂rφ+ r(∂rφ)2
)

+
r

2

(
(∂rφ)2 − |dφ|2

)
,

from which the result follows.

Definition 4.3.3. Let (N, g) be a Riemannian manifold with a noncompact bound-

ary ∂N . We say that N is asymptotically flat with order q > 0, if there is a compact

set K ⊂ N and a diffeomorphism f : N\K → Rn
+\B+

1 such that, in the coordinate

chart defined by f (which we call the asymptotic coordinates of N), we have

|gab(y)− δab|+ |y||gab,c(y)|+ |y|2|gab,cd(y)| = O(|y|−q) , as |y| → ∞ ,

where a, b, c, d = 1, ..., n.

Suppose the manifold N , of dimension n ≥ 3, is asymptotically flat with order

q > n−2
2

, as defined above. Assume also that Rg is integrable on N , and hg is

integrable on ∂N . Let (y1, ..., yn) be the asymptotic coordinates induced by the
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diffeomorphism f . Then the limit

m(g) = lim
R→∞

{
n∑

a,b=1

∫
y∈Rn+, |y|=R

(gab,b − gbb,a)
ya
|y|

dσ +
n−1∑
i=1

∫
y∈∂Rn+, |y|=R

gni
yi
|y|

dσ

}
(4.9)

exists, and we call it the mass of (M, g). As proved in [4], m(g) is a geometric

invariant in the sense that it does not depend on the asymptotic coordinates.

The expression in (4.9) is due to F. Marques and is the analogue of the ADM

mass for the manifolds of Definition 4.3.3. A positive mass theorem for m(g), similar

to the classical ones in [50,62], is stated as follows:

Theorem 4.3.4 ([4]). Assume n = 3. If Rg, hg ≥ 0, then we have m(g) ≥ 0 and

the equality holds if and only if N is isometric to R3
+.

The asymptotically flat manifolds we work with in this paper come from the

stereographic projection of compact manifolds with boundary. Inspired by Schoen’s

approach [47] to the classical Yamabe problem, this projection is defined by means

of a Green’s function with singularity at a boundary point. Since we do not have

the control of the Green’s function expression used in the case of manifolds without

boundary, the relation with (4.9) is obtained by means of an integral defined in [12].

This is stated in the next proposition.

Proposition 4.3.5. Let (M, g) be a compact n-manifold with boundary and consider

Fermi coordinates centered at x0 ∈ ∂M . If d =
[
n−2

2

]
, suppose in those coordinates

we have

gab(x) = δab + hab(x) +O(|x|2d+2)
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with hab(x) = O(|x|d+1) and tr (hab(x)) = O(|x|2d+2). Let G be a smooth postive

function on M\{x0} written near x0 as

G(x) = |x|2−n + φ(x)

where φ is smooth on M\{x0} satisfying φ(x) = O(|x|d+3−n| log |x||). If we define

the metric ĝ = G
4

n−2 g and set

I(x0, ρ) =
4(n− 1)

n− 2

∫
∂+B+

ρ (0)

(
|x|2−n∂aG(x)− ∂a|x|2−nG(x)

) xa
|x|
dσ

−
∫
∂+B+

ρ (0)

(
|x|3−2nxa∂bhab(x)− 2n|x|1−2nxaxbhab(x)

)
dσ ,

then (M\{x0}, ĝ) is asymptotically flat in the sense of Definition 4.3.3 with mass

m(ĝ) = lim
ρ→0

I(x0, ρ).

Proof. Consider inverted coodinates ya = |x|−2xa. The first statement follows from

the fact that ĝ
(

∂
∂ya
, ∂
∂yb

)
= δab + O(|y|−d−1| log |y||). In order to prove the last one,

we can mimic the proof of [12, Proposition 4.3] to obtain∫
∂+B+

ρ−1 (0)

ya
|y|

∂

∂yb
ĝ

(
∂

∂ya
,
∂

∂yb

)
dσρ−1 −

∫
∂+B+

ρ−1 (0)

ya
|y|

∂

∂ya
ĝ

(
∂

∂yb
,
∂

∂yb

)
dσρ−1

= I(x0, ρ) +O(ρ2d+4−n(log ρ)2) .

Since (x1, ..., xn) are Femi coordinates,

ĝ

(
∂

∂yi
,
∂

∂yn

)
= 0 , for i = 1, ..., n− 1 , if yn = 0

the result then follows
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Proposition 4.3.6. If in addition to the hypotheses of Proposition 4.3.5 we assume

n = 3 and h(x0) = tr (πij(x0)) = 0, then

P ′(G, ρ) = − 1

16
I(x0, ρ) +O(ρ| log ρ|).

Proof. Observe that in dimension n = 3 we have d = 0 and so φ(x) = O(| log |x||),

and the expansion (4.6) gives

hij(x) = 2πij(x0)xn +O(|x|2), hna(x) = 0, tr (πij(x0)) = 0.

Then ∫
∂+B+

ρ (0)

(
|x|3−2nxa∂bhab(x)− 2n|x|1−2nxaxbhab(x)

)
dσ

= −12

∫
∂+B+

ρ (0)

xixjπij(x0)xn|x|−5dσ +O(ρ) = O(ρ) ,

since the integral involving xixjπij(x0) vanishes by symmetry. A direct calculation

shows ∫
∂+B+

ρ (0)

(
|x|2−n∂aG(x)− ∂a|x|2−nG(x)

) xa
|x|
dσ

=

∫
∂+B+

ρ (0)

(
|x|2−n∂aφ(x)− ∂a|x|2−nφ(x)

) xa
|x|
dσ ,

and so

I(x0, ρ) = 8

∫
∂+B+

ρ (0)

(
|x|2−n∂aφ(x)− ∂a|x|2−nφ(x)

) xa
|x|
dσ +O(ρ) .

On the other hand, using Lemma 4.3.2 we obtain

P ′(G, ρ) = −1

2

∫
∂+B+

ρ (0)

(
|x|2−n∂aφ(x)− ∂a|x|2−nφ(x)

) xa
|x|
dσ +O(ρ| log ρ|)
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and the result follows.

4.4 Isolated and isolated simple blow-up points

In this section we briefly collect the definitions and main results of isolated and

isolated simple blow-up sequences from [2, Section 4]. They are inspired by the

corresponding ones for manifolds without boundary and are similar to the ones in

[28,29].

Definition 4.4.1. Let Ω ⊂ M be a domain in a Riemannian manifold (M, g). We

say that x0 ∈ Ω∩ ∂M is a blow-up point for the sequence {ui ∈Mi}∞i=1, if there is a

sequence {xi} ⊂ Ω ∩ ∂M such that

(1) xi → x0;

(2) ui(xi)→∞;

(3) xi is a local maximum of ui|∂M .

Briefly we say that xi → x0 is a blow-up point for {ui}. The sequence {ui} is called

a blow-up sequence.

Convention If xi → x0 is a blow-up point, we use gi-Fermi coordinates

ψi : B+
δ (0)→M

centered at xi and work in B+
δ (0) ⊂ Rn

+, for some small δ > 0.

Notation. If xi → x0 is a blow-up point we set Mi = ui(xi), εi = M
−(pi−1)
i .

Definition 4.4.2. We say that a blow-up point xi → x0 is an isolated blow-up point

for {ui} if there exist δ, C > 0 such that

ui(x) ≤ Cdḡi(x, xi)
− 1
pi−1 , for all x ∈ ∂M\{xi} , dḡi(x, xi) < δ .
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Since Fermi coordinates are normal on the boundary, the above definition is equiva-

lent to

ui(ψi(z)) ≤ C|z|−
1

pi−1 , for all z ∈ ∂′B+
δ (0)\{0} . (4.10)

This definition is invariant under renormalization. This follows from the fact that if

vi(y) = s
1

pi−1ui(ψi(sy)), then

ui(ψi(z)) ≤ C|z|−
1

pi−1 ⇐⇒ vi(y) ≤ C|y|−
1

pi−1 ,

where z = sy.

Harnack inequalities give the following two lemmas:

Lemma 4.4.3. Let xi → x0 be an isolated blow-up point. Then {ui} satisfies

ui(ψi(z)) ≤ C|z|−
1

pi−1 , for all z ∈ B+
δ (0)\{0} .

Lemma 4.4.4. Let xi → x0 be an isolated blow-up point and δ as in Definition 4.4.2.

Then there exists C > 0 such that for any 0 < s < δ
3

we have

max
B+

2s(0)\B+
s/2

(0)
(ui ◦ ψi) ≤ C min

B+
2s(0)\B+

s/2
(0)

(ui ◦ ψi) .

The next proposition says that, in the case of an isolated blow-up point, the

sequence {ui}, when renormalized, converges to the standard Euclidean solution U .

Proposition 4.4.5. Let xi → x0 be an isolated blow-up point. We set

vi(y) = M−1
i (ui ◦ ψi)(M−(pi−1)

i y) , for y ∈ B+

δM
pi−1
i

(0) .
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Then given Ri →∞ and βi → 0, after choosing subsequences, we have

(a) |vi − U |C2(B+
Ri

(0)) < βi;

(b) limi→∞
Ri

logMi
= 0;

(c) limi→∞ pi = n
n−2

.

Remark 4.4.6. Let xi → x0 and consider a conformal change ζ
4

n−2

i gi of the metrics

gi (see the last paragraph of Section 4.2.4). Suppose the conformal factors ζi > 0

are uniformly bounded (above and below) with ζi(xi) = 1 and ∂ζi
∂zk

(xi) = 0 for

k = 1, ..., n− 1. Then, using Proposition 4.4.5, it is not difficult to see that xi → x0

is an isolated blow-up point for {ui} if and only it is for {ζ−1
i ui}. This is the case

when we use conformal Fermi coordinates (see Proposition 4.2.3) centered at xi.

The set of blow-up points is handled in the next proposition.

Proposition 4.4.7. Given small β > 0 and large R > 0 there exist constants

C0, C1 > 0, depending only on β, R and (Mn, g), such that if u is solution of (4.7)

and max∂M u ≥ C0, then n
n−2
−p < β and there exist x1, ..., xN ∈ ∂M , N = N(u) ≥ 1,

local maxima of u, such that:

(1) If rj = Ru(xj)
−(p−1) for j = 1, ..., N , then {Drj(xj) ⊂ ∂M}Nj=1 is a disjoint

collection, where Drj(xj) is the boundary metric ball.

(2) For each j = 1, ..., N ,
∣∣u(xj)

−1u(ψ̄j(z))− U(u(xj)
p−1z)

∣∣
C2(B+

2rj
(0))

< β,

where we are using Fermi coordinates ψ̄j : B+
2rj

(0)→M centered at xj.

(3) We have

u(x) dḡ(x, {x1, ..., xN})
1
p−1 ≤ C1 , for all x ∈ ∂M ,

u(xj) dḡ(xj, xk)
1
p−1 ≥ C0 , for any j 6= k , j, k = 1, ..., N .
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We now introduce the notion of an isolated simple blow-up point. If xi → x0 is

an isolated blow-up point for {ui}, for 0 < r < δ, set

ūi(r) =
2

σn−1rn−1

∫
∂+B+

r (0)

(ui ◦ ψi)dσr and wi(r) = r
1

pi−1 ūi(r) .

Note that the definition of wi is invariant under renormalization. More precisely, if

vi(y) = s
1

pi−1ui(ψi(sy)), then r
1

pi−1 v̄i(r) = (sr)
1

pi−1 ūi(sr).

Definition 4.4.8. An isolated blow-up point xi → x0 for {ui} is simple if there

exists δ > 0 such that wi has exactly one critical point in the interval (0, δ).

Remark 4.4.9. Let xi → x0 be an isolated blow-up point and Ri → ∞. Using

Proposition 4.4.5 it is not difficult to see that, choosing a subsequence, r 7→ r
1

pi−1 ūi(r)

has exactly one critical point in the interval (0, ri), where ri = RiM
−(pi−1)
i → 0.

Moreover, its derivative is negative right after the critical point. Hence, if xi → x0

is isolated simple then there exists δ > 0 such that w′i(r) < 0 for all r ∈ [ri, δ).

A basic result for isolated simple blow-up point is stated as follows:

Proposition 4.4.10. Let xi → x0 be an isolated simple blow-up point for {ui}. Then

there exist C, δ > 0 such that

(a) Miui(ψi(z)) ≤ C|z|2−n for all z ∈ B+
δ (0)\{0};

(b) Miui(ψi(z)) ≥ C−1Gi(z) for all z ∈ B+
δ (0)\B+

ri
(0), where Gi is the Green’s

function so that: 
LgiGi = 0, in B+

δ (0)\{0},

Gi = 0, on ∂+B+
δ (0),

BgiGi = 0, on ∂′B+
δ (0)\{0}
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and |z|n−2Gi(z)→ 1, as |z| → 0. Here, ri is defined as in Remark 4.4.9.

Remark 4.4.11. Suppose that xi → x0 is an isolated simple blow-up point for {ui}.

Set

vi(y) = M−1
i (ui ◦ ψi)(M−(pi−1)

i y) , for y ∈ B+

M
pi−1
i δ

(0) .

Then, as a consequence of Propositions 4.4.5 and 4.4.10, we see that vi ≤ CU in

B+

δM
p1−1
i

(0).

We finally have the following estimate for τi = n
n−2
− pi, which is proved using

Proposition 4.3.1:

Proposition 4.4.12. Let xi → x0 be an isolated simple blow-up point for {ui} and

let ρ > 0 be small. Then there exists C > 0 such that

τi ≤


Cε

1−2ρ+oi(1)
i , for n ≥ 4,

Cε
1−2ρ+oi(1)
i log(ε−1

i ), for n = 3.

(4.11)

4.5 Blow-up estimates

In this section we give a pointwise estimate for a blow-up sequence {ui} in a

neighborhood of an isolated simple blow-up point. Our estimates are obtained for

dimension n = 3.

Let xi → x0 be an isolated simple blow-up point for the sequence {ui ∈Mi}. We

use conformal Fermi coordinates centered at xi. Thus we will work with conformal

metrics g̃i = ζ
4

n−2

i gi and sequences {ũi = ζ−1
i ui} and {ε̃i}, where ε̃i = ũi(xi)

−(pi−1) =

εi, since ζi(xi) = 1. As observed in Remark 4.4.6, xi → x0 is still an isolated blow-up

point for the sequence {ũi} and satisfies the same estimates of Proposition 4.4.10
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(since we have uniform control on the conformal factors ζi > 0, these estimates are

preserved). Let ψi : B+
δ′ (0)→M denote the g̃i-Fermi coordinates centered at xi.

In order to simplify our notations, we will omit the simbols ˜ and ψi in the rest

of this section. Thus, the metrics g̃i will be denoted by gi and points ψi(x) ∈M , for

x ∈ B+
δ′ (0), will be denoted simply by x. In particular, xi = ψi(0) will be denoted

by 0 and ui ◦ ψi by ui.

Set vi(y) = ε
1

pi−1

i ui(εiy) for y ∈ B+

δ′ε−1
i

= B+

δ′ε−1
i

(0). We know that vi satisfies
Lĝivi = 0, inB+

δ′ε−1
i

,

Bĝivi + (n− 2)f̂−τii vpii = 0, on ∂′B+

δ′ε−1
i

,

(4.12)

where f̂i(y) = fi(εiy) and ĝi is the metric with coefficients (ĝi)kl(y) = (gi)kl(εiy).

Let r 7→ 0 ≤ χ(r) ≤ 1 be a smooth cut-off function such that χ(r) ≡ 1 for

0 ≤ r ≤ δ and χ(r) ≡ 0 for r > 2δ. We set χε(r) = χ(εr). Thus, χε(r) ≡ 1 for

0 ≤ r ≤ δε−1 and χε(r) ≡ 0 for r > 2δε−1.

Observing that tr(πkl(0)) = 0 holds due to Proposition 4.2.3, by [3, Proposition

5.1] for every i there is a solution φi of
∆φi(y) = −2χεi(|y|)εiπkl(0)yn(∂k∂lU)(y) , for y ∈ Rn

+ ,

∂nφi(ȳ) + nU
2

n−2φi(ȳ) = 0 , for ȳ ∈ ∂Rn
+ ,

(4.13)

where ∆ stands for the Euclidean Laplacian, satisfying

|∇rφi|(y) ≤ Cεi|πkl(0)|(1 + |y|)3−r−n , for y ∈ Rn
+ , r = 0, 1 or 2 , (4.14)

φi(0) =
∂φi
∂y1

(0) = ... =
∂φi
∂yn−1

(0) = 0 (4.15)
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and ∫
∂Rn+

U
n
n−2 (ȳ)φi(ȳ) dȳ = 0 . (4.16)

Assumption In the rest of this section, n = 3.

Lemma 4.5.1. There exist δ, C > 0 such that, for |y| ≤ δε−1
i ,

|vi − U − φi|(y) ≤ C max{εi, τi} .

Proof. We consider δ < δ′ to be chosen later and set

Λi = max
|y|≤δε−1

i

|vi − U − φi|(y) = |vi − U − φi|(yi) ,

for some |yi| ≤ δε−1
i . From Remark 4.4.11 we know that vi(y) ≤ CU(y) for |y| ≤ δε−1

i .

Hence, if there exists c > 0 such that |yi| ≥ cε−1
i , then

Λi = |vi − U − φi|(yi) ≤ C |yi|2−n ≤ C εn−2
i .

This implies the stronger inequality |vi − U − φi|(y) ≤ C εn−2
i = Cεi, for |y| ≤ δε−1

i .

Hence, we can suppose that |yi| ≤ δε−1
i /2.

Suppose, by contradiction, the result is false. Then, choosing a subsequence if

necessary, we can suppose that

Λ−1
i εi → 0 and Λ−1

i τi → 0 . (4.17)

Define

wi(y) = Λ−1
i (vi − U − φi)(y) , for |y| ≤ δε−1

i .
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By the equations (4.2) and (4.12), wi satisfies
Lĝiwi = Qi , inB+

δε−1
i

,

Bĝiwi + biwi = Qi , on ∂′B+

δε−1
i

,

(4.18)

where

bi = (n− 2)f̂−τii
v
pi
i −(U+φi)

pi

vi−(U+φi)
,

Qi = −Λ−1
i

{
(Lĝi −∆)(U + φi) + ∆φi

}
,

Qi = −Λ−1
i

{
(n− 2)f̂−τii (U + φi)

pi − (n− 2)U
n
n−2 − nU

2
n−2φi − n−2

2
hĝi(U + φi)

}
.

Observe that, for any function u,

(Lĝi −∆)u(y) = (ĝkli − δkl)(y)∂k∂lu(y) + (∂kĝ
kl
i )(y)∂lu(y)

− n− 2

4(n− 1)
Rĝi(y)u(y) +

∂k
√

det ĝi√
det ĝi

ĝkli (y)∂lu(y)

= (gkli − δkl)(εiy)∂k∂lu(y) + εi(∂kg
kl
i )(εiy)∂lu(y)

− n− 2

4(n− 1)
ε2iRgi(εiy)u(y) +O(εNi |y|N−1)∂lu(y) .

Hence,

Qi(y) = −Λ−1
i (gkli − δkl)(εiy)∂k∂l(U + φi)(y)− Λ−1

i εi(∂kg
kl
i )(εiy)∂l(U + φi)(y)

+
n− 2

4(n− 1)
Λ−1
i ε2iRgi(εiy)(U + φi)(y)− Λ−1

i ∆φi(y)

+O
(
Λ−1
i εNi |y|N−1(1 + |y|)1−n)

= O
(
Λ−1
i εNi (1 + |y|)N−n

)
+O

(
Λ−1
i ε2i (1 + |y|)2−n) . (4.19)
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Observe that

(n− 2)f̂−τii (U + φi)
pi − (n− 2)U

n
n−2 − nU

2
n−2φi

= (n− 2)
(
f̂−τii (U + φi)

pi − (U + φi)
n
n−2

)
+O(U

4−n
n−2φ2

i )

= (n− 2)f̂−τii

(
(U + φi)

pi − (U + φi)
n
n−2

)
+ (n− 2)(f̂−τii − 1)(U + φi)

n
n−2 +O(U

4−n
n−2φ2

i ) .

Using

U
4−n
n−2φ2

i = O(ε2i |πkl(0)|2(1 + |y|)2−n),

hĝi(U + φi) = O(εNi (1 + |y|)N+1−n),

f̂−τii

(
(U + φi)

pi − (U + φi)
n
n−2

)
= O(τi(U + φi)

n
n−2 log(U + φi)) = O(τi(1 + |y|)1−n),

(f̂−τii − 1)(U + φi)
n
n−2 = O(τi log(fi)(U + φi)

n
n−2 ) = O(τi(1 + |y|)−n),

where in the second line we used Proposition 4.2.3, we obtain

Q̄i(ȳ) = O
(
Λ−1
i ε2i (1 + |ȳ|)2−n)+O

(
Λ−1
i τi(1 + |ȳ|)1−n) . (4.20)

Moreover,

bi(y)→ nU
2

n−2 , in C2
loc(Rn

+) , (4.21)

and

bi(y) ≤ C(1 + |y|)−2 , for |y| ≤ δε−1
i . (4.22)

Since |wi| ≤ |wi(yi)| = 1, we can use standard elliptic estimates to conclude

that wi → w, in C2
loc(Rn

+), for some function w, choosing a subsequence if necessary.
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From the identities (4.17), (4.19), (4.20) and (4.21), we see that w satisfies
∆w = 0 , in Rn

+ ,

∂nw + nU
2

n−2w = 0 , on ∂Rn
+ .

(4.23)

Claim. w(y) = O((1 + |y|)−1), for y ∈ Rn
+.

Choosing δ > 0 sufficiently small, we can consider the Green’s function Gi for

the conformal Laplacian Lĝi in B+

δε−1
i

subject to the boundary conditions BĝiGi = 0

on ∂′B+

δε−1
i

and Gi = 0 on ∂+B+

δε−1
i

. Let ηi be the inward unit normal vector to

∂+B+

δε−1
i

. Then the Green’s formula gives

wi(y) = −
∫
B+

δε−1
i

Gi(ξ, y)Qi(ξ) dvĝi(ξ) +

∫
∂+B+

δε−1
i

∂Gi

∂ηi
(ξ, y)wi(ξ) dσĝi(ξ)

+

∫
∂′B+

δε−1
i

Gi(ξ, y)
(
bi(ξ)wi(ξ)−Qi(ξ)

)
dσĝi(ξ) . (4.24)

Using the estimates (4.19), (4.20) and (4.22) in the equation (4.24), we obtain

|wi(y)| ≤ CΛ−1
i ε2i

∫
B+

δε−1
i

|ξ − y|2−n(1 + |ξ|)2−ndξ

+ C

∫
∂′B+

δε−1
i

|ξ̄ − y|2−n(1 + |ξ̄|)−2dξ̄ + CΛ−1
i ε2i

∫
∂′B+

δε−1
i

|ξ̄ − y|2−n(1 + |ξ̄|)2−ndξ̄

+ CΛ−1
i τi

∫
∂′B+

δε−1
i

|ξ̄ − y|2−n(1 + |ξ̄|)1−ndξ̄ + CΛ−1
i εn−2

i

∫
∂+B+

δε−1
i

|ξ − y|1−ndσ(ξ) ,

for |y| ≤ δε−1
i /2. Here, we have used the fact that |Gi(x, y)| ≤ C |x − y|2−n for

|y| ≤ δε−1
i /2 and, since vi(y) ≤ CU(y), |wi(y)| ≤ CΛ−1

i εn−2
i for |y| = δε−1

i . Hence,

|w(y)| ≤ CΛ−1
i ε2i (δε

−1
i )4−n+C(1+|y|)−1+CΛ−1

i ε2i log(δε−1
i )+CΛ−1

i τi(1+|y|)2−n+CΛ−1
i εn−2

i ,

95



which gives

|wi(y)| ≤ C
(
(1 + |y|)−1 + Λ−1

i εi + Λ−1
i τi

)
(4.25)

for |y| ≤ δε−1
i /2. The Claim now follows from the hypothesis (4.17).

Now, we can use the claim above and Lemma 4.2.1 to see that

w(y) =
n−1∑
j=1

cj∂jU(y) + cn

(
n− 2

2
U(y) + yb∂bU(y)

)
,

for some constants c1, ..., cn. It follows from the identity (4.15) that wi(0) = ∂wi
∂yj

(0) =

0 for j = 1, ..., n− 1. Thus we conclude that c1 = ... = cn = 0. Hence, w ≡ 0. Since

|wi(yi)| = 1, we have |yi| → ∞. This, together with the hypothesis (4.17), contradicts

the estimate (4.25), since |yi| ≤ δε−1
i /2, and concludes the proof of Lemma 4.5.1.

Lemma 4.5.2. There exists C > 0 such that τi ≤ Cεi.

Proof. Suppose, by contradiction, the result is false. Then we can suppose that

τ−1
i εi → 0 and, by Lemma 4.5.1, there exists C > 0 such that

|vi − U − φi|(y) ≤ Cτi , for |y| ≤ δε−1
i .

Define

wi(y) = τ−1
i (vi − U − φi)(y) , for |y| ≤ δε−1

i .

Then wi satisfies the equations (4.18) with

bi = (n− 2)f̂−τii
v
pi
i −(U+φi)

pi

vi−(U+φi)
,

Qi = −τ−1
i {(Lĝi −∆)(U + φi) + ∆φi},

Qi = −τ−1
i

{
(n− 2)f̂−τii (U + φi)

pi − (n− 2)U
n
n−2 − nU

2
n−2φi − n−2

2
hĝi(U + φi)

}
.
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Similarly to the estimates (4.19) and (4.20) we have

|Qi(y)| ≤ Cτ−1
i ε2i (1 + |y|)2−n , (4.26)

|Qi(y)| ≤ Cτ−1
i ε2i (1 + |y|)2−n + C(1 + |y|)1−n (4.27)

and bi satisfies the estimate (4.22).

By definition, wi ≤ C and, by elliptic standard estimates, we can suppose that

wi → w in C2
loc(Rn

+) for some function w. By the identity (4.21) and the estimates

(4.26) and (4.27) we see that w satisfies the equations (4.23).

A contradiction is achieved following the same lines as [2, Lemma 6.2].

Proposition 4.5.3. There exist C, δ > 0 such that

|∇k(vi − U − φi)(y)| ≤ Cεi(1 + |y|)−k

for all |y| ≤ δε−1
i and k = 0, 1, 2.

Proof. The estimate with k = 0 follows from Lemmas 4.5.1 and 4.5.2. The estimates

with k = 1, 2 follow from elliptic theory.

4.6 The Pohozaev sign restriction

In this section we assume n = 3 and prove a sign restriction for an integral term

in Proposition 4.3.1 and some consequences for the blow-up set.
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Theorem 4.6.1. Let xi → x0 be an isolated simple blow-up point for the sequence

{ui ∈Mi}. Suppose that ui(xi)ui → G away from x0, for some function G. Then

lim inf
r→0

P ′(G, r) ≥ 0 . (4.28)

Proof. Set vi(y) = ε
1

pi−1

i ui(εiy) for y ∈ B+

δε−1
i

= B+

δε−1
i

(0). We know that vi satisfies
Lĝivi = 0, inB+

δε−1
i

,

Bĝivi + (n− 2)f̂−τii vpii = 0, on ∂′B+

δε−1
i

,

where f̂i(y) = fi(εiy) and ĝi is the metric with coefficients (ĝi)kl(y) = (gi)kl(εiy).

Observe that, from Remark 4.4.11, we know that vi ≤ CU in B+

δε−1
i

.

We write the Pohozaev identity of Proposition 4.3.1 as

P (ui, r) = Fi(ui, r) + F̄i(ui, r) +
τi

pi + 1
Qi(ui, r) , (4.29)

where

Fi(u, r) = −
∫
B+
r

(zb∂bu+ n−2
2
u)(Lgi −∆)u dz,

F̄i(u, r) = n−2
2

∫
∂′B+

r
(z̄b∂bu+ n−2

2
u)hgiu dz̄,

Qi(u, r) = (n−2)2

2

∫
∂′B+

r
f−τii upi+1dz̄ − (n− 2)

∫
∂′B+

r
(z̄k∂kf)f−τi−1

i upi+1dz̄.

Since we can assume h(0) = 0, we have

F̄i(ui, r) = O(εn−2r) .

On the other hand, we can choose r > 0 small such that Qi(ui, r) ≥ 0. So we only

have to handle Fi(ui, r).
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Set Ǔi(z) = ε
− 1
pi−1

i U(ε−1
i z) and φ̌i(z) = ε

− 1
pi−1

i φi(ε
−1
i z). We have

Fi(ui, r) =−
∫
B+
r

(zb∂bui +
n− 2

2
ui)(Lgi −∆)uidz

= −ε
− 2

(pi−1)
+n−2

i

∫
B+

rε−1
i

(yb∂bvi +
n− 2

2
vi)(Lĝi −∆)vidy ,

Fi(Ǔi + φ̌i, r) = −
∫
B+
r

(zb∂bǓi +
n− 2

2
Ǔi)(Lgi −∆)Ǔidz

= −ε
− 2

(pi−1)
+n−2

i

∫
B+

rε−1
i

(
yb∂b(U + φi) +

n− 2

2
(U + φi)

)
(Lĝi −∆)(U + φi)dy .

Observe that ε
− 2
pi−1

+n−2

i = ε
−(n−2)

τi
pi−1

i → 1, as i → ∞, by Proposition 4.4.12. It

follows from Proposition 4.5.3 that

|Fi(ui, r)− Fi(Ǔi + φ̌i, r)| ≤ Cε2i

∫
B+

rε−1
i

(1 + |y|)1−ndy ≤ Cεir . (4.30)

We know from (4.6) that gkl(z) = δkl + 2πkl(0)zn + O(|z|2) in Fermi coordinates,

and recall that we are assuming tr(πkl(0)) = h(0) = 0. Thus, due to symmetry

arguments,

Fi(Ǔi + φ̌i, r) = O(εir) .

Hence, P (ui, r) ≥ −Cεir, which implies that

P ′(G, r) = lim
i→∞

ε
− 2
pi−1

i P (ui, r) ≥ −Cr .

Once we have proved Theorem 4.6.1, the next two propositions are similar to

[36, Lemma 8.2, Proposition 8.3] or [42, Propositions 4.1 and 5.2].
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Proposition 4.6.2. Let xi → x0 be an isolated blow-up point for the sequence {ui ∈

Mi}. Then x0 is an isolated simple blow-up point for {ui}.

Proposition 4.6.3. Let β,R, u, C0(β,R) and {x1, ..., xN} ⊂ ∂M be as in Proposition

4.4.7. If β is sufficiently small and R is sufficiently large, then there exists a constant

C̄(β,R) > 0 such that if max∂M u ≥ C0 then

dḡ(xj, xk) ≥ C̄ for all 1 ≤ j 6= k ≤ N.

Corollary 4.6.4. Suppose the sequence {ui ∈ Mi} satisfies max∂M ui → ∞. Then

pi → n/(n − 2) and the set of blow-up points is finite and consists only of isolated

simple blow-up points.

4.7 Proof of Theorem 4.1.1

In view of standard elliptic estimates and Harnack inequalities, we only need to

prove that ‖u‖C0(∂M) is bounded from above (see [33, Lemma A.1] for the boundary

Harnack inequality). Assume by contradiction there exists a sequence ui of positive

solutions of (4.1) such that

max
∂M

ui →∞ as i→∞.

It follows from Corollary 4.6.4 that we can assume ui has N isolated simple blow-up

points

x
(1)
i → x(1), ... , x

(N)
i → x(N),
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and that τi = n
n−2
− pi → 0 as i→∞. Without loss of generality, suppose

ui(x
(1)
i ) = min

{
ui(x

(1)
i ), ..., ui(x

(N)
i )

}
for all i.

Now for each k = 1, ..., N , consider the Green’s function Gk for the conformal

Laplacian Lg with boundary condition BgGk = 0 and singularity at x(k) ∈ ∂M . In

Fermi coordinates centered at the respective singularities, those functions satisfy

∣∣Gk(x)− |x|2−n
∣∣ ≤ C

∣∣ log |x|
∣∣ for n = 3,

according to [6, Proposition B.2].

It follows from the upper bound (a) of Proposition 4.4.10 that there exists some

function G such that ui(x
(1)
i )ui → G in C2

loc(M\{x(1), ..., x(N)}). Moreover, the lower

control (b) of that proposition and elliptic theory yields the existence of ak > 0,

k = 1, ..., N , and b ∈ C2(M) such that

G =
N∑
k=1

akGk + b,

and 
Lgb = 0, inM,

Bgb = 0, on ∂M.

The hypothesis Q(M,∂M) > 0 ensures that b ≡ 0. If ĝ = G
4

n−2

1 g, by Proposition

4.3.5, (M\{x(1)}, ĝ) is an asymptotically flat manifold (in the sense of Definition

4.3.3) with with mass

m(ĝ) = lim
ρ→0

I(x(1), ρ).
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Moreover, we have Rĝ = −4(n−1)
n−2

G
n+2
n−2LgG = 0 and hĝ = − 2

n−2
G

n
n−2BgG = 0. Then

the positive mass Theorem 4.3.4 and the assumption that M is not conformally

equivalent to B3 gives m(ĝ) > 0. So, by Proposition 4.3.6,

lim
ρ→0

P ′(G1, ρ) < 0.

This contradicts the local sign restriction of Theorem 4.6.1 and ends the proof of

Theorem 4.1.1.
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CONCLUSION AND FUTURE PERSPECTIVES

In this thesis, we obtained both existence results of blowing-up solutions to

Yamabe-type equations on manifolds and a compactness result to the boundary

Yamabe problem in the scalar flat case. Despite the progress made in the field in

recent years, there are many interesting and challenging questions which remain open

on this type of problems. Here are some of them which I would like to investigate in

the future.

Problem 1. Do we have compactness to the boundary Yamabe problem in the scalar

flat case for higher dimensions 4 ≤ n ≤ 24? A key to this problem would be to find a

better correction term in the blow-up estimates. This would be the extension to our

work [5] in higher dimensions.

Problem 2. Do we have compactness to the boundary Yamabe problem with pre-

scribed zero mean curvature on general manifolds? The case with umbilic boundary

was solved by Disconzi and Khuri [19]. A key here would be to prove a conjecture on

the vanishing of the umbilicity tensor up to a certain order.

Problem 3. Under what conditions do we have compactness or noncompactness to

the Yamabe-type problems with both nonlinearities on the interior and boundary part

of the equations? Han and Li [33] proved compactness for locally conformally flat

manifolds with umbilic boundary in this case. It would be interesting to attempt
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constructing blowing-up solutions and proving compactness under suitable conditions

for the general problem.
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107



[35] Emmanuel Hebey and Juncheng Wei, Resonant states for the static Klein-Gordon-Maxwell-

Proca system, Math. Res. Lett. 19 (2012), no. 4, 953–967.

[36] Marcus A. Khuri, Fernando Coda Marques, and Richard Schoen, A compactness theorem for

the Yamabe problem, J. Differential Geom. 81 (2009), no. 1, 143–196.

[37] John M. Lee and Thomas H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17

(1987), no. 1, 37–91.

[38] Yanyan Li and Lei Zhang, A Harnack type inequality for the Yamabe equation in low dimen-

sions, Calc. Var. Partial Differential Equations 20 (2004), no. 2, 133–151.

[39] , Compactness of solutions to the Yamabe problem. II, Calc. Var. Partial Differential

Equations 24 (2005), no. 2, 185–237.

[40] , Compactness of solutions to the Yamabe problem. III, J. Funct. Anal. 245 (2007),

no. 2, 438–474.

[41] Yanyan Li and Meijun Zhu, Uniqueness theorems through the method of moving spheres, Duke

Math. J. 80 (1995), no. 2, 383–417.

[42] , Yamabe type equations on three-dimensional Riemannian manifolds, Commun. Con-

temp. Math. 1 (1999), no. 1, 1–50.

[43] Fernando Coda Marques, A priori estimates for the Yamabe problem in the non-locally confor-

mally flat case, J. Differential Geom. 71 (2005), no. 2, 315–346.

[44] , Existence results for the Yamabe problem on manifolds with boundary, Indiana Univ.

Math. J. 54 (2005), no. 6, 1599–1620.

[45] , Conformal deformations to scalar-flat metrics with constant mean curvature on the

boundary, Comm. Anal. Geom. 15 (2007), no. 2, 381–405.

[46] M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Differ-

ential Geometry 6 (1971/72), 247–258.

[47] Richard Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature,

J. Differential Geom. 20 (1984), no. 2, 479–495.

108



[48] , Variational theory for the total scalar curvature functional for Riemannian metrics

and related topics, Topics in calculus of variations (Montecatini Terme, 1987), Lecture Notes

in Math., vol. 1365, Springer, Berlin, 1989, pp. 120–154.

[49] , On the number of constant scalar curvature metrics in a conformal class, Differential

geometry, Pitman Monogr. Surveys Pure Appl. Math., vol. 52, Longman Sci. Tech., Harlow,

1991, pp. 311–320.

[50] Richard Schoen and Shing Tung Yau, On the proof of the positive mass conjecture in general

relativity, Comm. Math. Phys. 65 (1979), no. 1, 45–76.

[51] Richard Schoen and Dong Zhang, Prescribed scalar curvature on the n-sphere, Calc. Var. Partial

Differential Equations 4 (1996), no. 1, 1–25.
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